• Title/Summary/Keyword: Strain calculation

Search Result 350, Processing Time 0.021 seconds

Axial compressive behavior of concrete-encased CFST stub columns with open composite stirrups

  • Ke, Xiaojun;Ding, Wen;Liao, Dingguo
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.399-409
    • /
    • 2021
  • The existing method to improve the coordination performance of the inner and outer parts of concrete-encased concrete-filled steel tube (CFST) composite columns by increasing the volume-stirrup ratio causes difficulties in construction due to over-dense stirrups. Thus, this paper proposes an open polygonal composite stirrup with high strength and high ductility CRB600H reinforced rebar, and seventeen specimens were constructed, and their axial compressive performance was tested. The main parameters considered were the volume-stirrup ratio, the steel tube size, the stirrup type and the stirrup strength. The test results indicated: For the specimens restrained by open octagonal composite stirrups, compared with the specimen of 0.5% volume-stirrup ratio, the compressive bearing capacity increased by 14.6%, 15.7% and 21.5% for volume-stirrup ratio of 0.73%, 1.07% and 1.61%, respectively. For the specimens restrained by open composite rectangle stirrups, compared with the specimen of 0.79% volume-stirrup ratio, the compressive bearing capacity increased by 7.5%, 6.1%, and -1.4% for volume-stirrup ratio of 1.12%, 1.58% and 2.24%, respectively. The restraint ability and the bearing capacity of the octagonal composite stirrup are better than other stirrup types. The specimens equipped with open polygonal composite stirrup not only had a higher ductility than those with the traditional closed-loop stirrup, but they also had a higher axial bearing capacity than those with an HPB300 strength grades stirrup. Therefore, the open composite stirrup can be used in practical engineering. A new calculation method was proposed based on the stress-strain models for confined concrete under different restrain conditions, and the predicted value was close to the experimental value.

Stability analysis of settled goaf with two-layer coal seams under building load-A case study in China

  • Yao, Lu;Ning, Jiang;Changxiang, Wang;Meng, Zhang;Dezhi, Kong;Haiyang, Pan
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.245-254
    • /
    • 2023
  • Through qualitative analysis and quantitative analysis, the contradictory conclusions about the stability of the settled goaf with two-layer coal seams subject to building load were obtained. Therefore, it is necessary to combine the additional stress method and numerical simulation to further analyze the foundation stability. Through borehole analysis and empirical formula analogy, the height of water-conducting fracture zone in No.4 coal and No.9 coal were obtained, providing the calculation range of water-conducting fracture zone for numerical simulation. To ensure the accuracy of the elastic modulus of broken gangue, the stress-strain curve were obtained by broken gangue compression test in dried state of No.4 coal seam and in soaking state of No.9 coal seam. To ensure the rationality of the numerical simulation results, the actual measured subsidence data were retrieved by numerical simulation. FISH language was used to analyze the maximum building load on the surface and determine the influence depth of building load on the foundation. The critical building load was 0.16 MPa of No.4 settled goaf and was 1.6 MPa of No.9 settled goaf. The additional stress affected the water-conducting fracture zone obviously, resulted in the subsidence of water-conducting fracture zone was greater than that of bending subsidence zone. In this paper, the additional stress method was analyzed by numerical simulation method, which can provide a new analysis method for the treatment and utilization of the settled goaf.

Earth Pressure Equation Acting on the Cylindrical Diaphragm Wall in a Shaft (원형수직구에 설치된 강성벽체에 작용하는 토압산정방법)

  • Kong, Jin-Young;Shin, Young-Wan;Hwang, Yi-Sung;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.21-29
    • /
    • 2009
  • On plane strain condition, many researchers have investigated the earth pressure according to the shape of wall, and standardized method has been applied to the design of the retaining wall. But on cylindrical diaphragm wall, at-rest earth pressure has been generally used. Even though this method is on conservative side, it may lead to over-design. In this paper, the application of convergence confinement method to the calculation of the earth pressure acting on the cylindrical diaphragm wall of a shaft was suggested. In addition, a model test was carried out to investigate the distributions of earth pressure. Model test results show that the earth pressures of diaphragm wall are about 1.4 times larger than active earth pressure and about 0.8 times less than at-rest earth pressure.

Evaluation of Service life for a Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 구조 수명 평가)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyoung-Geun;Doh, Young-Dae
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.23-30
    • /
    • 2008
  • In this paper, the effect of the natural aging on the strength distribution and structural service life of a Filament Wound (FW) composite pressure vessel was studied. The fiber failure strain, which is varied significantly, was considered as the design random variable and the strength analysis was carried out by probabilistic numerical approach. The progressive failure analysis technique and the First Order Reliability Method (FORM) were embedded in this numerical model. As the calculation results, the probability of failure was obtained for each aging time steps and it is found that the strength degradation in FW composite pressure vessel, due to the natural aging, appears within 10 year-aging-time. As an example of the life prediction under natural aging using arbitrary laminated model, the service lifetime of 13 years was predicted based on the probability of failure of 2.5% and the design pressure of 3,250 psi.

Investigating the performance of polymer cement resistance in football stadium construction

  • Yangguang Zhang
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.203-213
    • /
    • 2023
  • New techniques, technologies, and materials should be used to design and build sports stadiums. Since this century, much progress has been made in covering the roofs of sports stadiums, and the possibility of accurate computer calculation has been provided for stadiums, so by choosing a new structure, we can double the beauty and resistance of these stadiums. A stadium has an excellent and valuable design when its structure, shell, building, materials, and joinery follow a high architectural idea at all levels and scales. This article examines the mechanical performance of polymer cement strength in the construction of football stadiums, along with their structural knowledge in the form of the best examples in the world. Portland cement is one of the most used materials for constructing football stadiums. However, its production requires spending a lot of money, wasting energy, and damaging the environment. Considering the disadvantages in the production and consumption of concrete in different environments, it is necessary to find alternative materials. It should be used with cheaper, simpler technology, abundant primary resources, energy saving, less environmental damage, and better chemical and physical properties in concrete. High-strength concrete technology is considered a new development in the construction industry of concrete structures. In hardened concrete, strength and durability are two main factors, and as the compressive strength of concrete increases, concrete becomes more brittle. As a result, its tensile strength does not increase in proportion to the increase in compressive strength and has less strain tolerance. For this reason, the need to use is evident from the fibers in high-strength concrete. Fibers are used in concrete to increase tensile strength, prevent crack propagation, and significantly increase softness. The increase with the change of these resistances depends on the strength of concrete without fibers, the shape of fibers, and the percentage of fibers. This cement is obtained from the wastes of chemical and petrochemical industries and the wastes from coal combustion, which have the properties mentioned as substitutes for Portland cement.

Suggestion for the improvement of the field measurements on the shotcrete lining (터널 숏크리트 계측의 개선방안)

  • Kim, Hak-Joon;Park, Si-Hyun;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.177-192
    • /
    • 2010
  • The field measurements on the shotcrete lining are usually performed during the tunnel construction. However, the credibility of the measurements is not certain because of the non-stress related strains occurring in the shotcrete, the uncertainty of the deformation modulus of the shotcrete, and the intrinsic difficulties involved in the strain measurements in the shotcrete. The problem related to the field measurements on the shotcrete is investigated using the review of the previous studies and the field measurement performed for this study. A method for the correction of stress measurements at the shotcrete lining, considering the non-stress related strains, is suggested using the literature review and the actual measurements obtained from the non-stress shotcretes. The deformation modulus used for the calculation of the stress acting on the shotcrete is also suggested.

Web-shear strength of steel-concrete composite beams with prestressed wide flange and hollowed steel webs: Experimental and practical approach

  • Han, Sun-Jin;Kim, Jae Hyun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.311-321
    • /
    • 2022
  • In the buildings with long spans and high floors, such as logistics warehouses and semiconductor factories, it is difficult to install supporting posts under beams during construction. Therefore, the size of structural members becomes larger inevitably, resulting in a significant increase in construction costs. Accordingly, a prestressed hybrid wide flange (PHWF) beam with hollowed steel webs was developed, which can reduce construction costs by making multiple openings in the web of the steel member embedded in concrete. However, since multiple openings exist and prestress is introduced only into the bottom flange concrete, it is necessary to identify the shear resistance mechanism of the PHWF beam. This study presents experimental shear tests of PHWF beams with hollowed steel webs. Four PHWF beams with cast-in-place (CIP) concrete were fabricated, with key variables being the width and spacing of the steel webs embedded in the concrete and the presence of shear reinforcing bars, and web-shear tests were conducted. The shear behavior of the PHWF beam, including crack patterns, strain behavior of steel webs, and composite action between the prestressed bottom flange and CIP concrete, were measured and analyzed comprehensively. The test results showed that the steel web resists external shear forces through shear deformation when its width is sufficiently large, but as its width decreased, it exerted its shear contribution through normal deformation in a manner similar to that of shear reinforcing bars. In addition, it was found that stirrups placed on the cross section where the steel web does not exist contribute to improving the shear strength and deformation capacity of the member. Based on the shear behavior of the specimens, a straightforward calculation method was proposed to estimate the web-shear strength of PHWF beams with CIP concrete, and it provided a good estimation of the shear strength of PHWF beams, more accurate than the existing code equations.

Effect of T6 heat treatment on the microstructure and mechanical properties of AA365 alloy fabricated by vacuum-assisted high pressure die casting (고진공 고압 다이캐스팅으로 제조된 AA365 합금의 미세조직과 기계적 특성에 미치는 T6 열처리의 영향)

  • Junhyub Jeon;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.121-127
    • /
    • 2024
  • We investigate the effect of T6 heat treatment on the microstructure and mechanical properties of AA365 (Al-10.3Si-0.37Mg-0.6Mn-0.11Fe, wt.%) alloy fabricated by vacuum-assisted high pressure die casting by means of thermodynamic calculation, X-ray diffraction, scanning and transmission electron microscopy, and tensile tests. The as-cast alloy consists of primary Al (with dendrite arm spacing of 10~15 ㎛), needle-like eutectic Si, and blocky α-AlFeMnSi phases. The solution treatment at 490 ℃ induces the spheroidization of eutectic Si and increase in the fraction of eutectic Si and α-AlFeMnSi phases. While as-cast alloy does not contain nano-sized precipitates, the T6-treated alloy contains fine β' and β' precipitates less than 20 nm that formed during aging at 190℃. T6 heat treatment improves the yield strength from 165 to 186 MPa due to the strengthening effect of β' and β' precipitates. However, the β' and β' precipitates reduce the strain hardening rate and accelerate the necking phenomenon, degrading the tensile strength (from 290 to 244 MPa) and fracture elongation (from 6.6 to 5.0%). Fractography reveals that the coarse α-AlFeMnSi and eutectic Si phases act as crack sites in both the as-cast and T6 treated alloys.

First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride (Gd 도핑된 비스무스 텔루라이드의 자기적 성질에 대한 제일원리 계산 연구)

  • Van Quang, Tran;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.

Development of mcyB-specific Ultra-Rapid Real-time PCR for Quantitative Detection of Microcystis aeruginosa (Microcystis aeruginosa의 정량을 위한 mcyB 특이 초고속 실시간 유전자 증폭법의 개발)

  • Jung, Hyunchul;Yim, Byoungcheol;Lim, Sujin;Kim, Byounghee;Yoon, Byoungsu;Lee, Okmin
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.46-56
    • /
    • 2018
  • A mcyB-specific Ultra-Rapid quantitative PCR was developed for the quantitative detection of Microcystis aeruginosa, which is often a dominant species in green tide. McyB-specific UR-qPCR was optimized under extremely short times of each step in thermal cycles, based on the specific primers deduced from the mcyB in microcystin synthetase of M. aeruginosa. The M. aeruginosa strain KG07 was used as a standard for quantification, after the microscopic counting and calculation by mcyB-specific UR-qPCR. The water samples from the river water with the Microcystis outbreak were also measured by using both methods. The $1.0{\times}10^8$ molecules of mcyB-specific DNA was recognized inner 4 minutes after beginning of UR-qPCR, while $1.0{\times}10^4$ molecules of mcyB-specific templates was detected inner 7 minutes with quantitative manner. From the range of $1.0{\times}10^2$ to $1.0{\times}10^8$ initial molecules, quantification was well established based on $C_T$ using mcyB-specific UR-qPCR (Regression coefficiency, $R^2=0.9977$). Between the numbers of M. aeruginosa cell counting under microscope and calculated numbers using mcyB-specific UR-qPCR, some differences were often found. The reasons for these differences were discussed; therefore, easy compensation method was proposed that was dependent on the numbers of the cell counting. Additionally, to easily extract the genomic DNA (gDNA) from the samples, a freeze-fracturing of water-sample using liquid nitrogen was tested, by excluding the conventional gDNA extraction method. It was also verified that there were no significant differences using the UR-qPCR with both gDNAs. In conclusion, the mcyB-specific UR-qPCR that we proposed would be expected to be a useful tool for rapid quantification and easy monitoring of M. aeruginosa in environmental water.