• Title/Summary/Keyword: Strain States

Search Result 228, Processing Time 0.032 seconds

Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens

  • Song, Hyun-Hwa;Lee, Jae-Kwan;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si-Young;Lee, Min-Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.72-78
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the phototoxic effects of blue light exposure on periodontal pathogens in both planktonic and biofilm cultures. Methods: Strains of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis, in planktonic or biofilm states, were exposed to visible light at wavelengths of 400.520 nm. A quartz-tungsten-halogen lamp at a power density of $500mW/cm^2$ was used for the light source. Each sample was exposed to 15, 30, 60, 90, or 120 seconds of each bacterial strain in the planktonic or biofilm state. Confocal scanning laser microscopy (CSLM) was used to observe the distribution of live/dead bacterial cells in biofilms. After light exposure, the bacterial killing rates were calculated from colony forming unit (CFU) counts. Results: CLSM images that were obtained from biofilms showed a mixture of dead and live bacterial cells extending to a depth of $30-45{\mu}m$. Obvious differences in the live-to-dead bacterial cell ratio were found in P. gingivalis biofilm according to light exposure time. In the planktonic state, almost all bacteria were killed with 60 seconds of light exposure to F. nucleatum (99.1%) and with 15 seconds to P. gingivalis (100%). In the biofilm state, however, only the CFU of P. gingivalis demonstrated a decreasing tendency with increasing light exposure time, and there was a lower efficacy of phototoxicity to P. gingivalis as biofilm than in the planktonic state. Conclusions: Blue light exposure using a dental halogen curing unit is effective in reducing periodontal pathogens in the planktonic state. It is recommended that an adjunctive exogenous photosensitizer be used and that pathogens be exposed to visible light for clinical antimicrobial periodontal therapy.

High rate deposition of poly-si thin films using new magnetron sputtering source

  • Boo, Jin-Hyo;Park, Heon-Kyu;Nam, Kyung-Hoon;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.186-186
    • /
    • 2000
  • After LeComber et al. reported the first amorphous hydrogenated silicon (a-Si: H) TFT, many laboratories started the development of an active matrix LCDs using a-Si:H TFTs formed on glass substrate. With increasing the display area and pixel density of TFT-LCD, however, high mobility TFTs are required for pixel driver of TF-LCD in order to shorten the charging time of the pixel electrodes. The most important of these drawbacks is a-Si's electron mobiliy, which is the speed at which electrons can move through each transistor. The problem of low carier mobility for the a-Si:H TFTs can be overcome by introducing polycrystalline silicon (poly-Si) thin film instead of a-Si:H as a semiconductor layer of TFTs. Therefore, poly-Si has gained increasing interest and has been investigated by many researchers. Recnetly, fabrication of such poly-Si TFT-LCD panels with VGA pixel size and monolithic drivers has been reported, . Especially, fabricating poly-Si TFTs at a temperature mach lower than the strain point of glass is needed in order to have high mobility TFTs on large-size glass substrate, and the monolithic drivers will reduce the cost of TFT-LCDs. The conventional methods to fabricate poly-Si films are low pressure chemical vapor deposition (LPCVD0 as well as solid phase crystallization (SPC), pulsed rapid thermal annealing(PRTA), and eximer laser annealing (ELA). However, these methods have some disadvantages such as high deposition temperature over $600^{\circ}C$, small grain size (<50nm), poor crystallinity, and high grain boundary states. Therefore the low temperature and large area processes using a cheap glass substrate are impossible because of high temperature process. In this study, therefore, we have deposited poly-Si thin films on si(100) and glass substrates at growth temperature of below 40$0^{\circ}C$ using newly developed high rate magnetron sputtering method. To improve the sputtering yield and the growth rate, a high power (10~30 W/cm2) sputtering source with unbalanced magnetron and Si ion extraction grid was designed and constructed based on the results of computer simulation. The maximum deposition rate could be reached to be 0.35$\mu$m/min due to a high ion bombardment. This is 5 times higher than that of conventional sputtering method, and the sputtering yield was also increased up to 80%. The best film was obtained on Si(100) using Si ion extraction grid under 9.0$\times$10-3Torr of working pressure and 11 W/cm2 of the target power density. The electron mobility of the poly-si film grown on Si(100) at 40$0^{\circ}C$ with ion extraction grid shows 96 cm2/V sec. During sputtering, moreover, the characteristics of si source were also analyzed with in situ Langmuir probe method and optical emission spectroscopy.

  • PDF

Lactobacillus plantarum APsulloc 331261 Fermented Products as Potential Skin Microbial Modulation Cosmetic Ingredients (Lactobacillus plantarum APsulloc 331261 발효 용해물의 피부 미생물 조절 효과)

  • Kim, Hanbyul;Myoung, Kilsun;Lee, Hyun Gee;Choi, Eun-Jeong;Park, Taehun;An, Susun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The skin is colonized by a large number of microorganisms with a stable composition of species. However, disease states of skin such as acne vulgaris, psoriasis, and atopic dermatitis have specific microbiome compositions that are different from those of healthy skin. The target modulation of the skin microbiome can be a potential treatment for these skin diseases. Quorum sensing (QS), a bacterial cell-cell communication system, can control the survival of bacteria and increase cell density. Also, QS affects the pathogenicity of bacteria such as biofilm formation and protease production. In this study, we confirmed anti-QS activity of Amorepacific patented ingredients, which are Lactobacillus ferment lysate (using Lactobacillus plantarum APsulloc 331261, KCCM 11179P) through bio-reporter bacterial strain Chromobacterium violaceum. The purple pigment production of C. violaceum controlled by QS was reduced 27.3% by adding 10 ㎍/mL of Lactobacillus ferment lysate (freeze dried). In addition, the Lactobacillus ferment lysate increased growth of Staphylococcus epidermidis 12% and decreased growth of Pseudomonas aeruginosa 38.5% and its biofilm formation 17.7% at a concentration of 10 ㎍/mL compared to the untreated control group. Moreover, S. epidermidis was co-cultured with the representative dermatological bacterium Staphylococcus aureus in the same genus, the growth of S. epidermidis was increased 134 % and the growth of S. aureus was decreased 13%. These results suggest that fermented lysate using Lactobacillus plantarum APsulloc 331261 may be useful as a cosmetic ingredient that can control the balance of skin microbiome.

Helicobacter pylori inhibited cell proliferation in human periodontal ligament fibroblasts through the Cdc25C/CDK1/cyclinB1 signaling cascade

  • Li, Huanying;Liang, Dongsheng;Hu, Naiming;Dai, Xingzhu;He, Jianing;Zhuang, Hongmin;Zhao, Wanghong
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.3
    • /
    • pp.138-147
    • /
    • 2019
  • Purpose: Several studies have shown that the oral cavity is a secondary location for Helicobacter pylori colonization and that H. pylori is associated with the severity of periodontitis. This study investigated whether H. pylori had an effect on the periodontium. We established an invasion model of a standard strain of H. pylori in human periodontal ligament fibroblasts (hPDLFs), and evaluated the effects of H. pylori on cell proliferation and cell cycle progression. Methods: Different concentrations of H. pylori were used to infect hPDLFs, with 6 hours of co-culture. The multiplicity of infection in the low- and high-concentration groups was 10:1 and 100:1, respectively. The Cell Counting Kit-8 method and Ki-67 immunofluorescence were used to detect cell proliferation. Flow cytometry, quantitative real-time polymerase chain reaction, and western blots were used to detect cell cycle progression. In the high-concentration group, the invasion of H. pylori was observed by transmission electron microscopy. Results: It was found that H. pylori invaded the fibroblasts, with cytoplasmic localization. Analyses of cell proliferation and flow cytometry showed that H. pylori inhibited the proliferation of periodontal fibroblasts by causing G2 phase arrest. The inhibition of proliferation and G2 phase arrest were more obvious in the high-concentration group. In the low-concentration group, the G2 phase regulatory factors cyclin dependent kinase 1 (CDK1) and cell division cycle 25C (Cdc25C) were upregulated, while cyclin B1 was inhibited. However, in the high-concentration group, cyclin B1 was upregulated and CDK1 was inhibited. Furthermore, the deactivated states of tyrosine phosphorylation of CDK1 (CDK1-Y15) and serine phosphorylation of Cdc25C (Cdc25C-S216) were upregulated after H. pylori infection. Conclusions: In our model, H. pylori inhibited the proliferation of hPDLFs and exerted an invasive effect, causing G2 phase arrest via the Cdc25C/CDK1/cyclin B1 signaling cascade. Its inhibitory effect on proliferation was stronger in the high-concentration group.

Suppressive Effect of Administrated Glutathione-Enriched Saccharomyces cerevisiae FF-8 on the Oxidative Stress in Alcoholic Fatty Liver (알코올 투여 흰쥐의 간 조직 산화스트레스에 미치는 글루타티온 고함유 효모 Saccharomyces cerevisiae FF-8 균체의 영향)

  • Cha, Jae-Young;Park, Sang-Hyun;Heo, Jin-Sun;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1053-1058
    • /
    • 2008
  • Glutathione is a well known chemotherapeutic agent for liver disease and is a popular nutritional supplement in the United States. Previous our studies reported the suppressive effects of glutathione-enriched Saccharomyces cerevisiae FF-8 strain (FF-8GY) on carbon tetrachloride- and alcohol-induced hepatotoxicity. The primary objective of this study was to investigate the comparative effects of FF-8GY and commercially available glutathione-enriched yeast extract (GYE) against the oxidative stress in alcohol-induced fatty liver of rats. The lipid peroxidative index (thiobarbituric acid-reactive substances, TBARS) and antioxidant status (reduced glutathione level) were used to monitor those protective roles of FF-8GY or GYE treatment. When the rat was treated alcohol, the TBARS levels in the whole liver and the subfractions of microsomal and mitochondria were significantly increased but these were significantly decreased by FF-8GY treatment and tended to be lowered by GYE treatment. The concentration of hepatic glutathione is known to be closely associated with antioxidant system and this was slightly deplete in the alcohol-induced rats, but this was recovered by treating with FF-8GY. However, the glutathione concentration was more significantly decreased in the GYE supplementation in alcohol feeding rats. Alcohol treatment also negatively affected the serum total protein and albumin, but these were significantly increased near normal levels in FF-8GY coadministered rats. These results suggest that glutathione-enriched Saccharomyces cerevisiae FF-8 strain may have positively mediate the alcohol-induced oxidative stress, and this effect was more pronounced in FF-8GY compared to GYE.

Effect of Fabric Sensor Type and Measurement Location on Respiratory Detection Performance (직물센서의 종류와 측정 위치가 호흡 신호 검출 성능에 미치는 효과)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Hyeok-Jae;Lee, Jeong-Hwan;Kwak, Hwi-Kuen;Ko, Yun-Su;Chae, Je-Wook;Oh, Su-Hyeon;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.22 no.4
    • /
    • pp.97-106
    • /
    • 2019
  • The purpose of this study was to investigate the effect of the type and measurement location of a fabric strain gauge sensor on the detection performance for respiratory signals. We implemented two types of sensors to measure the respiratory signal and attached them to a band to detect the respiratory signal. Eight healthy males in their 20s were the subject of this study. They were asked to wear two respiratory bands in turns. While the subjects were measured for 30 seconds standing comfortably, the respiratory was given at 15 breaths per minute were synchronized, and then a 10-second break; subsequently, the entire measurement was repeated. Measurement locations were at the chest and abdomen. In addition, to verify the performance of respiratory measurement in the movement state, the subjects were asked to walk in place at a speed of 80 strides per minute(SPM), and the respiratory was measured using the same method mentioned earlier. Meanwhile, to acquire a reference signal, the SS5LB of BIOPAC Systems, Inc., was worn by the subjects simultaneously with the experimental sensor. The Kruskal-Wallis test and Bonferroni post hoc tests were performed using SPSS 24.0 to verify the difference in measurement performances among the group of eight combinations of sensor types, measurement locations, and movement states. In addition, the Wilcoxon test was conducted to examine whether there are differences according to sensor type, measurement location, and movement state. The results showed that the respiratory signal detection performance was the best when the respiratory was measured in the chest using the CNT-coated fabric sensor regardless of the movement state. Based on the results of this study, we will develop a chest belt-type wearable platform that can monitor the various vital signal in real time without disturbing the movements in an outdoor environment or in daily activities.

A Study on Commemoration Culture of Vietnam War Memorials in Vietnam (베트남전쟁 메모리얼에 나타난 기념문화)

  • Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.3
    • /
    • pp.26-38
    • /
    • 2011
  • The purpose of this study was to analyze the commemoration culture of Vietnam War Memorials (VWM) in Vietnam. Through site survey, the researcher selected 23 VWM in Vietnam and analyzed 5 categories: memorial type, design concept and narratives, location and spatial form, landscape elements, and content expressed in landscape details. The results are as follows: 1. Because of the long, drawn out Vietnam War, which lasted from 1955 to 1975, VWM were divided into 10 types mainly as soldier cemeteries based on a traditional memorial style, battlefields and places of tragedies considering sense of place, war museums representing victory and atrocity in war, and peace parks promoting reconciliation and peacemaking. 2. The analysis revealed that the main concepts and narratives of VWM were to value the victims of the Vietnam War, remember soldiers' contributions, highlight the victory in war and resistance to the United States, and express a sense of place. Peacemaking applied only to My Lai Peace Park and Han-Viet Hoa Binh Cong Vien, built by international cooperation. 3. Cemeteries and appreciation memorials were designed to follow a traditional memorial space form that highly regard both axis and symmetry. The design concept at battlefields and places where tragedies occurred depended mainly upon a sense of place and used symbolic landscape elements to compensate for the undefined concept. 4. Sculptures and towers were mainly used to highlight war victory and resistance as the representative style of a Socialist country, weapons and pictures exhibited in war museums and battlefield showed the reality and strain of war. Symbolic elements of Buddhism and Confucianism were often introduced as a way to venerate the memory of deceased persons. 5. The state and heroic actions in the Vietnam War were realistically depicted on sculptures and walls. Also, the symbolic phrase, 'TO-QUOC-GUI-CONG' meaning 'our country remember your achievement', were written on the memorial tower and 'Quagmiire' was used to metaphorically represent the difficulties faced by the U.S. military on battlefields during the war and the uncertainly that pervaded U.S. society in those days. 6. In VWM, ideologies like nationalism, patriotism, socialism, capitalism were mixed and traditional cultures like Buddhism, Confucianism, Taoism were inherent. Differing from their Confucianism culture, war heroes, particularly including women, were often described by sculpture, monument, and pictures and the conflict in and outside the country regarding the Vietnam War was shown. Further study will be required to analyze design characteristics of VWM in the u.s. and to understand the difference in commemoration cultures between Vietnam and the U.S.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF