• 제목/요약/키워드: Strain Sensors

검색결과 538건 처리시간 0.027초

고온용 세라믹 박막형 압력센서의 제작과 그 특성 (Fabrication of Ceramic Thin Film Type Pressure Sensors for High-Temperature Applications and Their Characteristics)

  • 정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제16권9호
    • /
    • pp.790-794
    • /
    • 2003
  • This paper describes the fabrication and characteristics of ceramic thin film type pressure sensors based on Ta-N strain gauges for high temperature applications. Ta-N thin-film strain gauges are deposited onto a thermally oxidized Si diaphragm by RF sputtering in an argon-nitrogen atmos[here($N_2$ gas ratio: 8%, annealing condition: 90$0^{\circ}C$, 1 hr.), patterned on a wheatstone bridge configuration, and used as pressure sensing elements with a high stability and a high gauge factor. The sensitivity is 1.097 ~ 1.21 mV/Vㆍkgf/$\textrm{cm}^2$ in the temperature range of 25 ~ 200 $^{\circ}C$ and the maximum non-linearity resistance), non-linearity than existing Si piezoresistive pressure sensors. The fabricated ceramic thin-film type pressure sensor is expected to be usefully applied as pressure and load sensors that os operable under high-temperature.

그래핀/탄소나노섬유 코팅된 3D 프린팅 고분자 구조를 이용한 신축성 스트레인 센서 (Stretchable Strain Sensors Using 3D Printed Polymer Structures Coated with Graphene/Carbon Nanofiber Hybrids)

  • 나승찬;이현종;임태경;윤정민;석지원
    • Composites Research
    • /
    • 제35권4호
    • /
    • pp.283-287
    • /
    • 2022
  • 신축성 스트레인 센서는 웨어러블 기기나 건강 모니터링과 같은 미래 응용 분야에 적용하기 위하여 개발되고 있는데, 센서의 신뢰성을 높이기 위해 안정성과 반복성이 고려되어야 한다. 본 연구에서는 3D 프린팅을 통해 키리가미 패턴이 있는 고분자 구조를 제작하여 센서의 신축성과 히스테리시스를 개선하였다. 견고한 전도성 네트워크를 구현하기 위하여 그래핀과 탄소나노섬유를 혼합한 하이브리드 소재를 고분자 구조에 코팅하였다. 제작한 신축성 스트레인 센서는 32%의 스트레인에 대해 게이지팩터가 36을 보였으며, 1%부터 30%까지의 다양한 스트레인에 대해서 안정적인 저항 변화 응답을 나타냈다.

PVDF 나노 복합체 기반 3차원 다공성 압전 응력 센서 (3D-Porous Structured Piezoelectric Strain Sensors Based on PVDF Nanocomposites)

  • 김정현;김현승;정창규;이한얼
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.307-311
    • /
    • 2022
  • With the development of Internet of Things (IoT) technologies, numerous people worldwide connect with various electronic devices via Human-Machine Interfaces (HMIs). Considering that HMIs are a new concept of dynamic interactions, wearable electronics have been highlighted owing to their lightweight, flexibility, stretchability, and attachability. In particular, wearable strain sensors have been applied to a multitude of practical applications (e.g., fitness and healthcare) by conformally attaching such devices to the human skin. However, the stretchable elastomer in a wearable sensor has an intrinsic stretching limitation; therefore, structural advances of wearable sensors are required to develop practical applications of wearable sensors. In this study, we demonstrated a 3-dimensional (3D), porous, and piezoelectric strain sensor for sensing body movements. More specifically, the device was fabricated by mixing polydimethylsiloxane (PDMS) and polyvinylidene fluoride nanoparticles (PVDF NPs) as the matrix and piezoelectric materials of the strain sensor. The porous structure of the strain sensor was formed by a sugar cube-based 3D template. Additionally, mixing methods of PVDF piezoelectric NPs were optimized to enhance the device sensitivity. Finally, it is verified that the developed strain sensor could be directly attached onto the finger joint to sense its movements.

Vibration-Based Monitoring of Stay-Cable Force Using Wireless Piezoelectric-Based Strain Sensor Nodes

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.669-677
    • /
    • 2012
  • This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor-node Imote2/SHM-DAQ is described. The sensor node is originally developed by University of Illinois at Urbana-Champaign and is adopted in this study to monitor strain-induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab-scaled cable.

Inductively coupled nanocomposite wireless strain and pH sensors

  • Loh, Kenneth J.;Lynch, Jerome P.;Kotov, Nicholas A.
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.531-548
    • /
    • 2008
  • Recently, dense sensor instrumentation for structural health monitoring has motivated the need for novel passive wireless sensors that do not require a portable power source, such as batteries. Using a layer-by-layer self-assembly process, nano-structured multifunctional carbon nanotube-based thin film sensors of controlled morphology are fabricated. Through judicious selection of polyelectrolytic constituents, specific sensing transduction mechanisms can be encoded within these homogenous thin films. In this study, the thin films are specifically designed to change electrical properties to strain and pH stimulus. Validation of wireless communications is performed using traditional magnetic coil antennas of various turns for passive RFID (radio frequency identification) applications. Preliminary experimental results shown in this study have identified characteristic frequency and bandwidth changes in tandem with varying strain and pH, respectively. Finally, ongoing research is presented on the use of gold nanocolloids and carbon nanotubes during layer-by-layer assembly to fabricate highly conductive coil antennas for wireless communications.

Poly-dimethylsiloxane (PDMS) 기판 위에 형성된 나노구조를 이용한 시각 인장센서의 개발 (Development of Optical Strain Sensor with Nanostructures on a Poly-dimethylsiloxane (PDMS) Substrate)

  • 김건휘;우현수;임근배;안태창
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.392-396
    • /
    • 2018
  • Structural color has many advantages over pigment based color. In recent years, researches are being conducted to apply these advantages to applications such as wearable devices. In this study, strain sensor, a kind of wearable device, was developed using structural color. The use of structural color has the advantage of not using energy and complex measuring equipment to measure strain rate. Wrinkle structure was fabricated on the surface of Poly-dimethylsiloxane (PDMS) and used it as a sensor which color changes according to the applied strain. In addition, a transmittance-changing sensor was developed and fabricated by synthesizing additional glass nanoparticles. Furthermore, a strain sensor was developed that is largely transparent at the target strain and opaque otherwise.

Magnetic Sensors and Actuators

  • Pasquale, M.
    • Journal of Magnetics
    • /
    • 제8권1호
    • /
    • pp.60-69
    • /
    • 2003
  • A review of mechanical sensing techniques based on magnetic methods is presented, with special reference to magnetoelastic strain gauges and force sensors. A novel strain sensor based on soft amorphous ribbons is described. Other types of magnetic sensors, for the measurement of torque and displacement are briefly discussed. An overview of magnetic actuators based on giant magnetostrictive materials, with some practical examples, is presented. Recent advances in the development and application of magnetic shape memory materials are discussed, together with the analysis of recent studies for the description of magnetic shape memory phenomena.

Embedded smart GFRP reinforcements for monitoring reinforced concrete flexural components

  • Georgiades, Anastasis V.;Saha, Gobinda C.;Kalamkarov, Alexander L.;Rokkam, Srujan K.;Newhook, John P.;Challagulla, Krishna S.
    • Smart Structures and Systems
    • /
    • 제1권4호
    • /
    • pp.369-384
    • /
    • 2005
  • The main objectives of this paper are to demonstrate the feasibility of using newly developed smart GFRP reinforcements to effectively monitor reinforced concrete beams subjected to flexural and creep loads, and to develop non-linear numerical models to predict the behavior of these beams. The smart glass fiber-reinforced polymer (GFRP) rebars are fabricated using a modified pultrusion process, which allows the simultaneous embeddement of Fabry-Perot fiber-optic sensors within them. Two beams are subjected to static and repeated loads (until failure), and a third one is under long-term investigation for assessment of its creep behavior. The accuracy and reliability of the strain readings from the embedded sensors are verified by comparison with corresponding readings from surface attached electrical strain gages. Nonlinear finite element modeling of the smart concrete beams is subsequently performed. These models are shown to be effective in predicting various parameters of interest such as crack patterns, failure loads, strains and stresses. The strain values computed by these numerical models agree well with corresponding readings from the embedded fiber-optic sensors.

탄소나노튜브 고분자 복합체 기반 스마트 구조건전성 진단 (Smart Structural Health Monitoring Using Carbon Nanotube Polymer Composites)

  • 박영빈;;;김상우
    • Composites Research
    • /
    • 제22권6호
    • /
    • pp.1-6
    • /
    • 2009
  • 탄소나노튜브 고분자 복합체는, 외력에 의한 변형에 따라 전기적 저항이 변화하는 피에조저항(piezoresistivity) 거동을 나타낸다. 피에조저항은 고분자 모재 내에서 탄소나노튜브가 형성하는 전기전도망(conductive network)의 변화에 의해서 발현된다. 피에조저항 낮은 탄소나노튜브 함유량에서 더 현저하게 나타난다. 탄소섬유, 카본블랙 등 타 탄소기반 소재에 비해 전기전도도와 길이 대 직경비(aspect ratio)가 월등히 우수하기 때문에, 낮은 탄소나노튜브의 함유량에서도 스트레인 센싱시스템을 구현할 수 있다. 본 연구에서는, 구조물에 부착 또는 임베드 시켜서 구조물의 건전성을 실시간을 진단할 수 있는 탄소나노튜브 고분자 복합체 기반 센싱시스템을 개발하였다. 센서는 열가소성 수지와 다중벽 탄소나노튜브를 사용하여 필름 형태로 제조되었으며, 센싱 성능은 나노복합체를 구조물에 부착한 후 인장, 굽힘, 압축 등의 다양한 형태의 하중을 가하면서 평가하였다.

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.