• Title/Summary/Keyword: Strain Rate Potential

Search Result 183, Processing Time 0.04 seconds

Isolation and Characterization of the Indigenous Microalgae Chlamydomonas reinhardtii K01 as a Potential Resource for Lipid Production and Genetic Modification (지질생산 및 유전자 조작의 잠재적 자원으로서의 토착 미세조류 Chlamydomonas reinhardtii K01의 분리 및 특성)

  • Kim, Eun-Kyung;Cho, Dae Hyun;Suh, Sang-Ik;Lee, Chang-Jun;Kim, Hee-Sik;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.202-209
    • /
    • 2022
  • The green alga Chlamydomonas reinhardtii, a unicellular haploid eukaryote, has long been used by researchers and industries as a cell factory to produce high value-added microalgae substances using genetic modification. Microalga K01, presumed to be Chlamydomonas, was isolated from 12 freshwater samples from the Chungcheong and Jeolla regions to replace C. reinhardtii, an introduced species currently used in most basic and industrial research. The isolated K01 strain was identified as C. reinhardtii through morphological and phylogenetic studies of the 18S rDNA gene sequence (NCBI accession number KC166137). The growth and lipid content of the isolated C. reinhardtii K01 were compared with three wild and four mutant strains in TAP medium, and it was found that the K01 strain could produce 1.74×107 cells/ml by the third day of culture. The growth rate of C. reinhardtii K01 was 1.5 times faster than UTEX2244, which showed the highest number of cells (1.20×107 cells/ml) among the compared strains. The lipid content of the isolated C. reinhardtii K01 (20.67%) was similar to those of the wild strains, although the fatty acid oleate C18:1 was not detected in the isolated strain but was identified in the seven others. The cell density of the isolated strain increased to 0.87 g/l during a six-day culture in BG11 medium, where nitrate (NaNO3) was introduced as a nitrogen source, while the seven acquired strains showed almost no cell proliferation.

An Evaluation of the Anti-oxidant Activity of Fermented Defatted Sesame Seeds (참깨탈지박 발효 추출물의 항산화 활성 평가)

  • Kim, Eun-Ji;Jo, Seung-Wha;Yim, Eun-jung;Kim, Kum-Suk;Choi, Beom-Seok;Lee, Nam-Rye;Jung, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.452-459
    • /
    • 2020
  • This study was conducted to investigate the total lignin content and anti-oxidant activity in extracts of defatted sesame seeds (DSS) fermented with 15 strains of Bacillus subtilis. The anti-oxidant activities of DSS were analyzed both before and after fermentation. The total lignan content of the DSS extracts fermented with BCH3678 (1,613.8 mg/l) and BCH3572 (1,599.5 mg/l) were relatively high compared to other strains. Anti-oxidant activity was determined according to phenolic compound and flavonoid content and DPPH radical scavenging rate; the highest total phenolic compound content was provided by the DSS with SRCM103716 at 2,803.3 mg GAE/g which returned total flavonoid content of 1,553.1 mg/g as strong correlation of its anti-oxidant activity. The DSS extract fermented by SRCM103716 at 37℃ for 24 hr showed the highest DPPH scavenging rate at 66.5%. The fermented DSS extracts, regardless of strain, demonstrated higher anti-oxidative activity than the unfermented control, and these results suggest that such extracts could be useful as a potential source of bioactive compounds.

Feasibility as a Laundry Detergent Additive of an Alkaline Protease from Bacillus clausii C5 Transformed by Chromosomal Integration (Chromosomal Integration에 의해 제조한 Bacillus clausii C5 유래의 alkaline protease의 세제 첨가제 응용성)

  • Joo, Han-Seung;Choi, Jang Won
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.352-360
    • /
    • 2012
  • Bacillus clausii I-52 which produced SDS- and $H_2O_2$-tolerant extracellular alkaline protease (BCAP) was isolated from heavily polluted tidal mud flat of West Sea in Incheon, Korea and stable strain (transformant C5) of B. clausii I-52 harboring another copy of BCAP gene in the chromosome was developed using the chromosome integration vector, pHPS9-fuBCAP. When investigated the production of BCAP using B. clausii transformant C5 through pilot-scale submerged fermentation (500 L) at $37^{\circ}C$ for 30 h with an aeration rate of 1 vvm and agitation rate of 250 rpm, protease yield of approximately 105,700 U/mL was achieved using an optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_4{\cdot}7H_2O$ 0.01%, $FeSO_4{\cdot}7H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). The enzyme stability of BCAP was increased by addition of polyols (10%, v/v) and also, the stabilities of BCAP towards not only the thermal-induced inactivation at $50^{\circ}C$ but also the SDS and $H_2O_2$-induced inactivation at $50^{\circ}C$ were enhanced. Among the polyols examined, the best result was obtained with propylene glycol (10%, v/v). The BCAP supplemented with propylene glycol exhibited extreme stability against not only the detergent components such as ${\alpha}$-orephin sulfonate (AOS) and zeolite but also the commercial detergent preparations. The granulized enzyme of BCAP was prepared with approximately 1,310,000 U/g of granule. Wash performance analysis using EMPA test fabrics revealed that BCAP granule exhibited high efficiency for removal of protein stains in the presence of anionic surfactants as well as bleaching agents. When compared to Savinase 6T$^{(R)}$ and Everlase 6T$^{(R)}$ manufactured by Novozymes, BCAP under this study probably showed similar or higher efficiency for the removal of protein stains. These results suggest that the alkaline protease produced from B. clausii transformant C5 showing high stability against detergents and high wash performance has significant potential and a promising candidate for use as a detergent additive.

Lactobacillus casei Secreting ${\alpha}$-MSH Induces the Therapeutic Effect on DSS-Induced Acute Colitis in Balb/c Mice

  • Yoon, Sun-Woo;Lee, Chul-Ho;Kim, Jeong-Yoon;Kim, Jie-Youn;Sung, Moon-Hee;Poo, Har-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1975-1983
    • /
    • 2008
  • The neuropeptide ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) has anti-inflammatory property by down regulating the expressions of proinflammatory cytokines. Because ${\alpha}$-MSH elicits the anti-inflammatory effect in various inflammatory disease models, we examined the therapeutic effect of oral administration of recombinant Lactobacillus casei, which secretes ${\alpha}$-MSH (L. casei-${\alpha}$-MSH), on dextran sulfate sodium (DSS)-induced colitis in Balb/c mice. Thus, we constructed the ${\alpha}$-MSH-secreting Lactobacillus casei by the basic plasmid, pLUAT-ss, which was composed of a PldhUTLS promoter and ${\alpha}$-amylase signal sequence from Streptococcus bovis strain. Acute colitis was induced by oral administration of 5% DSS in drinking water for 7 days. To investigate the effect of L. casei-${\alpha}$-MSH on the colitis, L. casei or L. casei-${\alpha}$-MSH was orally administered for 7 days and their effects on body weight, mortality rate, cytokine production, and tissue myeloperoxidase (MPO) activity were observed. Administration of L. casei-${\alpha}$-MSH reduced the symptom of acute colitis as assessed by body weight loss (DSS alone: $14.45{\pm}0.2\;g$; L. casei-${\alpha}$-MSH: $18.2{\pm}0.12\;g$), colitis score (DSS alone: $3.6{\pm}0.4$; L. casei-${\alpha}$-MSH: $1.4{\pm}0.6$), MPO activity (DSS alone: $42.7{\pm}4.5\;U/g$; L. casei-${\alpha}$-MSH: $10.25{\pm}0.5\;U/g$), survival rate, and histological damage compared with the DSS alone mice. L. casei-${\alpha}$-MSH-administered entire colon showed reduced in vitro production of proinflammatory cytokines and $NF-{\kappa}B$ activation. The ${\alpha}$-MSH-secreting recombinant L. casei showed significant anti-inflammatory effects in the murine model of acute colitis and suggests a potential therapeutic role for this agent in clinical inflammatory bowel diseases.

Simultaneous Removal of Phenol and Hexavalent Chromium by Rhodococcus sp. CP01 (Rhodococcus sp. CP01에 의한 페놀과 6가 크롬이온의 동시 제거)

  • 최광현;오영숙;김병동;최성찬
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2000
  • Simultaneous reduction of Cr(VI) and degradation of phenol was observed in batch and bench-scale continuous stirred tank reactors using Rhodococcus sp. CP01 isolated from leachate. The strain CP01, which was capable of utilizing phenol as a sole source of carbon and energy, completely reduced added hexavalent chromium (0.25 mM) to its trivalent form during 60 hr batch assay under optimal conditions (pH 7.0 and 1,000 mg/L of phenol concentration). The rates of Cr(VI) reduction and phenol degradation were estimated as 4.17 $\mu$M Cr(VI) and 38.4 mg phenol.$L^{-1}{\cdot}hr^{-1}$, respectively. The continuous culture experiment was conducted for 46 days using synthetic feed containing different levels of chromate (0.0625 to 0.25 mM) and phenol(1,000 to 4,000 mg/L). With a hydraulic retention time of 100 hr, Cr(VI) reduction efficiency was mostly 100% for influent Cr(VI) and phenol concentrations of 0.125 mM and 3,000 mg/L, respectively. During quasi-steady-state operation, specific rate of Cr(VI) reduction was calculated as 0.34 mg Cr(VI).g $protein^{-1}{\cdot}hr^{-1}$ which was comparable to reported values obtained by using glucose as growth substrate. The results suggest the potential application of biological treatment for detoxification of wastewater contaminated simultaneously with Cr(VI) and pheonol.

  • PDF

Isolation of Acinetobacter calcoaceticus BP-2 Capable of Degradation of Bisphenol A (Bisphenol A 분해균주 Acinetobacter calcoaceticus BP-2의 분리 및 bisphenol A 분해 특성)

  • Kwon, Gi-Seok;Kim, Dong-Geol;Lee, Jung-Bok;Shin, Kee-Sun;Kum, Eun-Joo;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1158-1163
    • /
    • 2006
  • Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, has been widely used as a monomer for production of epoxy resins and polycarbonate plastics, and final products of BPA include adhesives, protective coatings, paints, optical lens, building materials, compact disks and other electrical parts. Since BPA is a toxic chemical to elicit acute cell cytotoxicity and chronic endocrine disrupting activity, the degradation of BPA has been focused during last decades. To overcome the problem of photo-, and chemical-degradation of BPA, in this study, a bacterium that is able to biodegrade BPA, was isolated. The bacterium, isolated froln the soil of plastic factory, was identified as Acinetobacter calcoaceticus (strain BP-2) based on physiological and 16S rDNA sequencing analysis. A. calcoaceticus BP-2 was able to grow in the presence of $1140{\mu}g\;ml^{-1}$ BPA. Biodegradation experiments showed that BP-2 mineralized BPA via 4-hydroxybenzoic acid and 4-hydroxyacetophenone, and average degradation rate was $53.3{\mu}g\;ml^{-1}\;day^{-1}$ under optimal conditions (pH 7 and $30^{\circ}C$). In high density resting cell $(3.5g-dcw.1^{-1})$ experiments, the maximal degradation rate was increased to $89.7{\mu}g\;ml^{-1}\;h^{-1}$. Our results suggest that BP-2 has high potential as a catalyst for practical BPA bioremediation.

Physiological and Ecological Characteristics of Lipid-Producing Botryococcus Isolated from the Korean Freshwaters (한국산 고지질 미세조류 Botryococcus의 분포 및 생장 특성)

  • Shin, Sang-Yoon;Jo, Beom-Ho;Lee, Hyung-Gwan;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.288-294
    • /
    • 2013
  • Recently, sustainable production of biofuel using algal biomass is being pursued because of its enormous potential. First and foremost, securing superior strains to develop an efficient production system for algal biodiesel through screening or genetic improvement of microalgae is necessary. The genus of Botryococcus is regarded as one of the superior microalgae for biodiesel production due to its ability to accumulate high amounts of lipids and hydrocarbons. However, its low growth rate is a bottleneck for large-scale production and commercialization. The purpose of this study is to obtain indigenous Botryococcus strains which possess high lipid content and biomass productivity. The Botryococcus sp. was isolated from the Seobu Reservoir in Jeju Island and identified as Botryococcus sudeticus J2 by comparative analysis of 18s rRNA gene and ITS regions. The biomass productivity and lipid content of B. sudeticus J2 were 0.116 g $L^{-1}day^{-1}$ and 40.1% of dry wt., respectively. This was higher than the value of B. braunii UTEX 572, which is widely regarded as a superior strain among Botryococcus species. The relatively high growth rate of B. sudeticus J2 was achieved under a light intensity of 240 ${\mu}mol$ photons $m^{-2}s^{-1}$ with ambient air spargingwhen compared to 120 ${\mu}mol$ photons $m^{-2}s^{-1}$ with 2% $CO_2$ supply. In summary, it is likely that the isolated B. sudeticus J2 can be used for the mass cultivation and biodiesel production.

Identification and Characterization of Lactobacillus salivarius subsp. salivarius from Korean Feces

  • Bae, Hyoung-Churl
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.89-119
    • /
    • 2004
  • This study was conducted to isolate lactobacilli having probiotic characteristics to be used as health adjuncts with fermented milk products. Acid tolerant strains were selected in Lactobacilli MRS broth adjusted to pH 4.0 from 80 healthy persons (infants, children and adults). And bile tolerant strains were examined in Lactobacilli MRS broth in which 1.0% bile salt was added. By estimation above characteristics, the strains No. 27, which was isolated from adult feces, was selected and identified as Lactobacillus salivarius subsp. salivarius based on carbohydrate fermentation and 16S rDNA sequencing. It was used as a probiotic strain in fermented milk products. The pH of fermented milk decreased from pH 6.7 to 5.0 and titratable acidity increased from 0.3% to 1.0% by L. salivarius subsp. salivarius (isolation strain 20, 35, and 37), when incubated for 36 h at $37^{\circ}C$. The number of viable cell counts of fermented milk was maximized at this incubation condition. The SDS-PAGE evidenced no significant change of casein but distinct changes of whey protein were observed by isolated L. salivarius subsp. salivarius for titratable acidity being incubated by $0.9{\sim}1.0%$ at $37^{\circ}C$. All of the strains produced 83.43 to 131.96 mM of lactic acid and 5.39 to 26.85 mM of isobutyric acid in fermented products. The in vitro culture experiment was performed to evaluate ability to reduce cholesterol levels and antimicrobial activity in the growth medium. The selected L. salivarius subsp. salivarius reduced $23{\sim}38%$ of cholesterol content in lactobacilli MRS broth during bacterial growth for 24 hours at $37^{\circ}C$. All of the isolated L. salivarius subsp. salivarius had an excellent antibacterial activity with $15{\sim}25$ mm of inhibition zone to E. coli KCTC1039, S. enteritidis KCCM3313, S. typhimurium M-15, and S. typhimurium KCCM40253 when its pH had not been adjusted. Also, all of the isolated L. salivarius subsp. salivarius had partial inhibition zone to E. coli KCTC1039, E. coli KCTC0115 and S. enteritidis KCCM3313 when it had been adjusted to pH 5.7. The selected strains were determined to have resistances of twelve antibiotic. Strains 27 and 35 among the L. salivarius subsp. salivarius showed the highest resistance to the antibiotics. Purified ${\alpha}$-galactosidase was obtained by DEAE-Sephadex A-50 ion exchange chromatography, Mono-Q ion exchange chromatography and HPLC column chromatography from L. salivarius subsp. salivarius 27. The specific activity of the purified enzyme was 8,994 units/mg protein, representing an 17.09 folds purification of the original cell crude extract. The molecular weight of enzyme was identified about 53,000 dalton by 12% SDS-PAGE. Optimal temperature and pH for activity of this enzyme were $40^{\circ}C$ and 7.0 respectively. The enzyme was found to be stable between 25 and $50^{\circ}C$. ${\alpha}$-galactosidase activity was lost rapidly below pH 5.0 and above pH 9.0. This enzyme was liberated galactose from melibiose, raffinose, and stachyose, and also the hydrolysis rate of substrate was compound by HPLC. These results indicated that some of the L. salivarius subsp. salivarius (strain 27 and 35) are considered as effective probiotic strains with a potential for industrial applications, but the further study is needed to establish their use as probiotics in vivo.

  • PDF

Production and fermentation characteristics of seafood kimchi started with Leuconostoc mesenteriodes SK-1 isolated from octopus baechu kimchi (문어 배추김치에서 분리한 Leuconostoc mesenteroides SK-1을 이용한 수산물김치의 제조 및 발효 특성)

  • Jang, Mi-Soon;Jung, Ko-Eun;Yun, Jae-Ung;Nam, Ki-Ho
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.1050-1057
    • /
    • 2016
  • This study was carried out to investigate the effectiveness of Leuconostoc mesenteroides isolated from octopus baechu kimchi as a potential starter for seafood kimchi. L. mesenteroides is lactic acid bacterium currently used as a starter for kimchi production. We selected the most effective L. mesenteroides strain from the 7 strains isolated from octopus baechu kimchi and, based on biochemical properties and 16S rRNA sequencing, identified the selected strain as L. mesenteroides SK-1. The SK-1 strain exhibited acid-tolerance, good survival capacity, and excellent dextran productivity. We investigated the effects the SK-1 of starter on seafood kimchi fermentation. Octopus baechu kimchi was fermented with L. mesenteroides SK-1 at $4^{\circ}C$ for 35 d. The decrease in pH and increase in acidity in octopus baechu kimchi fermented with the SK-1 starter occurred more quickly than that in the control kimchi indicating that. Octopus baechu kimchi with SK-1 starter has a relatively slow rate of increase in lactic acid production. As a result, octopus baechu kimchi prepared with L. mesenteroides SK-1 can be maintained at a suitable ripening degree over an extended period of time compared to that of the control kimchi, Moreover, the octopus baechu kimchi started with L. mesenteroides SK-1 has excellent sensory properties, including a refreshing taste, and a weak sour odor.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF