• Title/Summary/Keyword: Strain Rate Potential

Search Result 183, Processing Time 0.03 seconds

Isolation and Degradation Characteristics of 2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether Degrading Bacterium (2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether 분해균의 분리 및 분해특성)

  • Han, Nan-Sook;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • The bacterial strains, which utilizes 2,4,4'-trichloro-2'-hydroxydiphenyl ether(TCHDPE) as a sole carbon source, were isolated by selective enrichment culture from soil samples of industrial waste deposits. The bacterium that showed the highestt biodegradation activity was designated as EL-O47R The isolated strain EL-O47R was Identified as the genus Pseudomonas from the results of morphological, cultural, and biochemical tests. The optimum conditions of medium for the growth and the degradation of TCHDPE were TCHDPE 500 ppm, (NH4)2SO4 0.1% as the nitrogen source, initial pH 7.0±0.1, and 37℃, respectively. In this conditions, the regradation rate of TCHDPE was about 97%. Pseudomonas sp. EL-O47R was tested for resistance to several metal compounds and antibiotics. Pseudomonas sp. EL-O47R was moderately grown to Cd(NO3)2, ZnCl2, AgSO4, CuSO4 and HgCl2. This strain was sensitive to rifampicin and kanamycln but resistant to ampicillin, penicillin, tetracyclin and chloramphenlcol. Pseudomonas sp. EL-O47R was grown structurally related com- pounds and potential metabolites of TCHDPE, and has the stability on TCHDPE biodegradation.

  • PDF

Effect of Cool Drinking Water on Production and Shell Quality of Laying Hens in Summer

  • Glatz, P.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.850-854
    • /
    • 2001
  • Feed intake, egg weight, rate of lay and shell quality characteristics were measured in an Australian tinted egg laying strain from 31-42 weeks of age, housed at $30^{\circ}C$ and provided drinking water at 5, 10, 17 and $30^{\circ}C$. In a second experiment a European brown egg laying strain (59-66 weeks of age) housed at $30^{\circ}C$ were provided drinking water at 5, 10, 15 and $30^{\circ}C$. Brown egg layers given cool drinking water (5, 10 and $15^{\circ}C$) consumed more (p<0.05) feed and produced significantly (p<0.05) thicker and heavier shells than hens given drinking water at ambient temperature ($30^{\circ}C$). However the tinted egg layers given chilled drinking water only consumed more (p<0.05) feed and produced thicker (p<0.05) and heavier (p<0.05) shells when consuming drinking water at $5^{\circ}C$. As the tinted egg layers acclimatised to the environmental temperature there was a decline in the influence of cool drinking water on feed intake and shell quality. For brown egg layers, however, cool drinking water resulted in an improvement (p<0.05) in feed intake and shell quality over the entire period birds were provided cool water. These studies suggest that there is potential for using cool drinking water to improve feed intake and shell quality of hens housed under hot conditions. The combination of high ambient temperature and high drinking water temperature, a common occurrence in Australian layer sheds, should be avoided.

Nannochloris eucaryotum growth: Kinetic analysis and use of 100% CO2

  • Concas, Alessandro;Lutzu, Giovanni Antonio;Locci, Antonio Mario;Cao, Giacomo
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.19-33
    • /
    • 2013
  • Microalgae are receiving an increasing attention because of their potential use as $CO_2$ capture method and/or as feedstock for biofuels production. On the other hand the current microalgae-based technology is still not widespread since it is characterized by technical and economic constraints that hinder its full scale-up. In such contest the growth kinetics of Nannochloris eucaryotum (a relatively unknown marine strain) in batch and semi-batch photobioreactors is quantitatively investigated with the aim of obtaining the corresponding kinetic parameters suitable for process engineering and its optimization. In particular the maximum growth rate was evaluated to be 1.99 $10^{-3}\;h^{-1}$. Half saturation concentrations for nitrates ($K_N$) and phosphates uptake ($K_P$) were evaluated as 5.4 $10^{-4}\;g_N\;L^{-1}$ and 2.5 $10^{-5}\;g_P\;L^{-1}$, respectively. Yield factors for nitrogen ($Y_N$) and phosphorus ($Y_P$) resulted to be 5.9 $10^{-2}\;g_N\;g^{-1}$ biomass and 6.0 $10^{-3}\;g_P\;g^{-1}{_{biomass}}$, respectively. The possibility of using 100% (v/v) $CO_2$ gas as carbon source is also evaluated for the first time in the literature as far as N. eucaryotum is concerned. The strain showed a good adaptability to high concentrations of dissolved $CO_2$ as well as to low pH. The lipid content under 100% $CO_2$ is about 16.16 %wt $wt^{-1}$ and the fatty acid methyl esters composition of the extracted oil is in compliance with the European regulation for quality biodiesel.

Characterization of the Biogenic Manganese Oxides Produced by Pseudomonas putida strain MnB1

  • Jiang, Shaofeng;Kim, Do-Gun;Kim, Jeong-Hyun;Ko, Seok-Oh
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.183-190
    • /
    • 2010
  • Biogenic Mn oxides are expected to have great potential in the control of water pollution due to their high catalytic activity, although information on biological Mn oxidation is not currently sufficient. In this study, the growth of a Mn oxidizing microorganism, Pseudomonas putida MnB1, was examined, with the Mn oxides formed by this strain characterized. The growth of P. putida MnB1 was not significantly influenced by Mn(II), but showed a slightly decreased growth rate in the presence of Pb(II) and EE2, indicating their insignificant adsorption onto the cell surface. Mn oxides were formed by P. putida MnB1, but the liquid growth medium and resulting biogenic solids were poorly crystalline, nano-sized particles. Biogenic Mn oxidation by P. putida MnB1 followed Michaelis-Menten kinetics, with stoichiometric amounts of Mn oxides formed, which corresponded with the initial Mn(II) concentration. However, the formation of Mn oxides was inhibited at high initial Mn(II) concentration, suggesting mass transfer obstruction of Mn(II) due to the accumulation of Mn oxides on the extracellular layer. Mn oxidation by P. putida MnB1 was very sensitive to pH and temperature, showing sharp decreases in the Mn oxidation rates outside of the optimum ranges, i.e. pH 7.43-8.22 and around 20-$26^{\circ}C$.

Selection of indigenous starter culture for safety and its effect on reduction of biogenic amine content in Moo som

  • Tangwatcharin, Pussadee;Nithisantawakhup, Jiraroj;Sorapukdee, Supaluk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1580-1590
    • /
    • 2019
  • Objective: The aims of this study were to select one strain of Lactobacillus plantarum (L. plantarum) for a potential indigenous safe starter culture with low level antibiotic resistant and low biogenic amine production and evaluate its effect on biogenic amines reduction in Moo som. Methods: Three strains of indigenous L. plantarum starter culture (KL101, KL102, and KL103) were selected based on their safety including antibiotic resistance and decarboxylase activity, and fermentation property as compared with a commercial starter culture (L. plantarum TISIR543). Subsequently, the effect of the selected indigenous safe starter culture on biogenic amines formation during Moo som fermentation was studied. Results: KL102 and TISIR 543 were susceptible to penicillin G, tetracycline, chloramphenicol, erythromycin, gentamycin, streptomycin, vancomycin, ciprofloxacin and trimethoprim (MIC90 ranging from 0.25 to $4{\mu}g/mL$). All strains were negative amino acid-decarboxylase for lysis of biogenic amines in screening medium. For fermentation in Moo som broth, a relatively high maximum growth rate of KL102 and TISIR543 resulted in a generation time than in the other strains (p<0.05). These strain counts were constant during the end of fermentation. Similarly, KL102 or TISIR543 addition supported increases of lactic acid bacterial count and total acidity in Moo som fermentation. For biogenic amine reduction, tyramine, putrescine, histamine and spermine contents in Moo som decreased significantly by the addition KL102 during 1 d of fermentation (p<0.05). In final product, histamine, spermine and tryptamine contents in Moo som inoculated with KL102 were lower amount those with TISIR543 (p<0.05). Conclusion: KL102 was a suitable starter culture to reduce the biogenic amine formation in Moo som.

Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular Staphylococcus aureus small colony variants

  • Luo, Wanhe;Liu, Jinhuan;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.48.1-48.12
    • /
    • 2022
  • Background: The poor intracellular concentration of enrofloxacin might lead to treatment failure of cow mastitis caused by Staphylococcus aureus small colony variants (SASCVs). Objectives: In this study, enrofloxacin composite nanogels were developed to increase the intracellular therapeutic drug concentrations and enhance the efficacy of enrofloxacin against cow mastitis caused by intracellular SASCVs. Methods: Enrofloxacin composite nanogels were formulated by an electrostatic interaction between gelatin (positive charge) and sodium alginate (SA; negative charge) with the help of CaCl2 (ionic crosslinkers) and optimized by a single factor test using the particle diameter, zeta potential (ZP), polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) as indexes. The formation mechanism, structural characteristics, bioadhesion ability, cellular uptake, and the antibacterial activity of the enrofloxacin composite nanogels against intracellular SASCVs strain were studied systematically. Results: The optimized formulation was comprised of 10 mg/mL (gelatin), 5 mg/mL (SA), and 0.25 mg/mL (CaCl2). The size, LC, EE, PDI, and ZP of the optimized enrofloxacin composite nanogels were 323.2 ± 4.3 nm, 15.4% ± 0.2%, 69.6% ± 1.3%, 0.11 ± 0.02, and -34.4 ± 0.8 mV, respectively. Transmission electron microscopy showed that the enrofloxacin composite nanogels were spherical with a smooth surface and good particle size distributions. In addition, the enrofloxacin composite nanogels could enhance the bioadhesion capacity of enrofloxacin for the SASCVs strain by adhesive studies. The minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration were 2, 4, 4, and 8 ㎍/mL, respectively. The killing rate curve had a concentration-dependent bactericidal effect as increasing drug concentrations induced swifter and more radical killing effects. Conclusions: This study provides a good tendency for developing enrofloxacin composite nanogels for treating cow mastitis caused by intracellular SASCVs and other intracellular bacterial infections.

Whole Genome Sequence of Lactiplantibacillus plantarum HOM3204 and Its Antioxidant Effect on D-Galactose-Induced Aging in Mice

  • Di Zhang;Heesung Shin;Tingting Wang;Yaxin Zhao;Suwon Lee;Chongyoon Lim;Shiqi Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1030-1038
    • /
    • 2023
  • Lactiplantibacillus plantarum, previously named Lactobacillus plantarum, is a facultative, homofermentative lactic acid bacterium widely distributed in nature. Several Lpb. plantarum strains have been demonstrated to possess good probiotic properties, and Lpb. plantarum HOM3204 is a potential probiotic strain isolated from homemade pickled cabbage plants. In this study, whole-genome sequencing was performed to acquire genetic information and predict the function of HOM3204, which has a circular chromosome of 3,232,697 bp and two plasmids of 48,573 and 17,060 bp, respectively. Moreover, various oxidative stress-related genes were identified in the strain, and its antioxidant activity was evaluated in vitro and in vivo. Compared to reference strains, the intracellular cell-free extracts of Lpb. plantarum HOM3204 at a dose of 1010 colony-forming units (CFU)/ml in vitro exhibited stronger antioxidant properties, such as total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging rate, superoxide dismutase activity, and glutathione (GSH) content. Daily administration of 109 CFU Lpb. plantarum HOM3204 for 45 days significantly improved the antioxidant function by increasing the glutathione peroxidase activity in the whole blood and GSH concentration in the livers of D-galactose-induced aging mice. These results suggest that Lpb. plantarum HOM3204 can potentially be used as a food ingredient with good antioxidant properties.

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

Biological Control of Lycariella magi(Diptera: Sciaridae), a Pest of Oyster Mushroom, Pleurotus ostreatus Using Entomopathogenic Nematodes (곤충병원성 선충을 이용한 느타리버섯해충, 긴수염버섯파리 (Lycoriella mali)의 생물적방제)

  • 김형환;추호렬;이흥수;박정규;이동운;진병래;추영무
    • Korean journal of applied entomology
    • /
    • v.40 no.1
    • /
    • pp.59-67
    • /
    • 2001
  • The potential of two entomopathogenic nematodes, Sreinernema carpocapsae Pocheon strain and Heterorhabditis bacteriophora Hamyang strain as biological control agents was evaluated against mushroom ny, Lycoriella mali in laboratory and field. Mortality of L. mali was significantly different according to nematode species, concentration, temperature, and developmental stage of fly S. carpocapsae was more effective than H. bacteriophora. Mortality of L. mali was higher at $25^{\circ}C$ than at $20^{\circ}C$. In addition, the 3rd instal and the 4th instar of L. mali were more susceptible than the 2nd instar. The lowest $LC^{50}$ value was represented by S. carpocapsae, 20.0 infective juveniles (Ijs) in the 3rd instar, 27.5 Ijs in the 4th instar at $25^{\circ}C$. S. carpocapsae infected all the developmental stages of L. mali except egg stage and the 1st instar of larva. The highest mortality was shown in adult female representing 74.0% at$20^{\circ}C$ and 80.0% at $25^{\circ}C$.L. mali female adult was influenced by S. carpocapsae in oviposition. The number of eggs by L. mali female infected by nematodes was much lower than uninfected females. S. carpocapsae was dispersed by infected L. mali adult with higher numbers by females than males. When S. carpocapsae was applied at the rate of $2.25{\times}10^{5}\;and\;4.5{\times}10^{5}\;Ijs/1.5\;\textrm{m}^2$ in the mushroom house, mortalities were 42.2% and 81.6%, respectively. The infective juveniles of nematodes survived for 14 days in the mushroom medium. However, nematodes did not affect mushroom growth.

  • PDF

Control of Red Pepper Anthracnose Using Bacillus subtilis YGB36, a Plant Growth Promoting Rhizobacterium (식물생장촉진근권세균 Bacillus subtilis YGB36을 이용한 고추 탄저병의 생물학적 방제)

  • Lee, Yong Yoon;Lee, Younmi;Kim, Young Soo;Kim, Hyun Sup;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.8-18
    • /
    • 2020
  • Red pepper, one of the major economic crops in Korea, is being affected by anthracnose disease caused by Colletotrichum acutatum. To control this disease, an antagonistic bacterial strain, Bacillus subtilis YGB36 identified by 16S rDNA sequencing, physiological and biochemical analyses is used as a biological control agent. In vitro screening revealed that the strain YGB36 possess strong antifungal activity against the pathogen Cylindrocarpon destructans. The strain exhibited cellulase, protease, amylase, siderophore production and phosphate solubility. In vitro conidial germination of C. acutatum was most drastically inhibited by YGB36 cell suspensions (106 cfu/ml) or culture filtrate. Development of anthracnose symptoms was reduced on detached immature green pepper fruits by treatment with cell suspensions, and its control value was recorded as 65.7%. The YGB36 bacterial suspension treatment enhanced the germination rate of red pepper seeds and promoted root development and growth under greenhouse conditions. The in vitro screening of fungicide and insecticide sensitivity test against YGB36 revealed that the bacterial growth was not affected by any of the insecticides, and 11 fungicides out of 21 used. Collectively, our results clearly suggest that the strain YGB36 is considered as one of the potential biocontrol agents against anthracnose disease in red pepper.