Browse > Article
http://dx.doi.org/10.12989/aer.2013.2.1.019

Nannochloris eucaryotum growth: Kinetic analysis and use of 100% CO2  

Concas, Alessandro (Centro di Ricerca Sviluppo e Studi Superiori in Sardegna (CRS4))
Lutzu, Giovanni Antonio (Centro Interdipartimentale di Ingegneria e Scienze Ambientali (CINSA), Universita di Cagliari e Laboratorio di Cagliari del Consorzio "La Chimica per l'Ambiente")
Locci, Antonio Mario (Dipartimento di Ingegneria Meccanica, Chimica e Materiali, Universita di Cagliari)
Cao, Giacomo (Centro di Ricerca Sviluppo e Studi Superiori in Sardegna (CRS4))
Publication Information
Advances in environmental research / v.2, no.1, 2013 , pp. 19-33 More about this Journal
Abstract
Microalgae are receiving an increasing attention because of their potential use as $CO_2$ capture method and/or as feedstock for biofuels production. On the other hand the current microalgae-based technology is still not widespread since it is characterized by technical and economic constraints that hinder its full scale-up. In such contest the growth kinetics of Nannochloris eucaryotum (a relatively unknown marine strain) in batch and semi-batch photobioreactors is quantitatively investigated with the aim of obtaining the corresponding kinetic parameters suitable for process engineering and its optimization. In particular the maximum growth rate was evaluated to be 1.99 $10^{-3}\;h^{-1}$. Half saturation concentrations for nitrates ($K_N$) and phosphates uptake ($K_P$) were evaluated as 5.4 $10^{-4}\;g_N\;L^{-1}$ and 2.5 $10^{-5}\;g_P\;L^{-1}$, respectively. Yield factors for nitrogen ($Y_N$) and phosphorus ($Y_P$) resulted to be 5.9 $10^{-2}\;g_N\;g^{-1}$ biomass and 6.0 $10^{-3}\;g_P\;g^{-1}{_{biomass}}$, respectively. The possibility of using 100% (v/v) $CO_2$ gas as carbon source is also evaluated for the first time in the literature as far as N. eucaryotum is concerned. The strain showed a good adaptability to high concentrations of dissolved $CO_2$ as well as to low pH. The lipid content under 100% $CO_2$ is about 16.16 %wt $wt^{-1}$ and the fatty acid methyl esters composition of the extracted oil is in compliance with the European regulation for quality biodiesel.
Keywords
microalgae; kinetics; Nannochloris eucaryotum; lipid content; biofuels; $CO_2$ capture;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fajardo, A.M., Cerdan, L.E., Medina, A.R., Acien Fernandez, F.G., Gonzàlez Moreno, P.A. and Molina Grima, E. (2007), "Lipid extraction from the microalga Phaeodactylum tricornutum", Eur. J. Lipid. Technol., 109, 120-126.   DOI   ScienceOn
2 Fogler, H.S. (2006), "Elements of chemical reaction engineering", 4th Edition, Prentice Hall, New Jersey.
3 Francisco, E.C., Neves, D.B., Jacop-Lopes, E. and Franco, T.T. (2010), "Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality", J. Chem. Technol. Biotechnol., 85, 395-403.   DOI   ScienceOn
4 Geisert, M., Rose, T., Bauer, W. and Zahn, R.H. (1987), "Occurence of carotenoids and sporopollenin in Nanochlorum eucaryotum, a novel marine alga with unusual characteristics", Biosystems, 20, 133-142.   DOI   ScienceOn
5 Halim, R., Gladman, B., Danquah, M.K. and Webley, P.A. (2011), "Oil extraction from microalgae for biodiesel production", Bioresour. Technol., 102, 178-185.   DOI   ScienceOn
6 Henley, W.J., Hironaka, J.L., Guillou, L., Buchheim, M.A., Buchheim, J.A., Fawley, M.W. and Fawley, K.P. (2004), "Phylogenetic analysis of the 'Nannochloris-like' algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta)", Phycologia, 43, 641-652.   DOI
7 Huang, G.H., Chen, F., Wei, D., Zhang, X.W. and Chen, G. (2010), "Biodiesel production by microalgal biotechnology", Appl. Energy, 87, 38-46.   DOI   ScienceOn
8 Jiang, L., Luo, S., Fan, X., Yang, Z. and Guo, R. (2011), "Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of $CO_2$", Appl. Energy, 88, 3336-3341.   DOI   ScienceOn
9 Amaro, H.M., Guedes, A. and Malcata, F.X. (2011), "Advances and perspectives in using microalgae to produce biodiesel", Appl. Energy, 88, 3402-3410.   DOI   ScienceOn
10 Bailey, J.E. and Ollis, D.F. (1986), "Biochemical engineering fundamentals", 2nd Edition, Mc-Graw-Hill, Inc. New York.
11 Borowitza, M.A. (1999), "Commercial production of microalgae: Ponds, tanks, tubes and fermenters", J. Biotechnol., 70, 313-321.   DOI   ScienceOn
12 Cao, G. and Concas, A. (2008), " Procedimento per la produzione di biopetrolio che prevede l'impiego di $CO_2$", Patent MI2008A001802.
13 Cao, G. and Concas, A. (2010), "Process for bio-oil production which makes use of carbon dioxide", Patent EP10158619.6.
14 Torrey, M. (2008), "Algae in the tank", Int. News Fats Oils Relat. Mater., 19, 432-437.
15 Sasi, D., Mitra, P., Vigueras, A. and Hill, G.A. (2011), "Growth kinetics and lipid production using Chlorella vulgaris in a circulating loop photobioreactor", J. Chem. Technol. Biotechnol., 86, 875-880.   DOI   ScienceOn
16 Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P., (1998), A look back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from microalgae, National Renewable Energy Laboratory, NREL/TP-580-24190, USA.
17 Singh, A., Olsen, S.I. and Singh Nigam, P. (2011), "A viable technology to generate third-generation biofuel", J. Chem. Technol. Biotechnol., 86 1349-1353.   DOI   ScienceOn
18 Sobczuk, T.M. and Chisti, Y. (2010), "Potential fuel oils from microalga Choricystis minor", J. Chem. Technol. Biotechnol., 85, 100-108.   DOI   ScienceOn
19 Tetali, S.D., Mitra, M. and Melis, A. (2007), "Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene", Planta, 225, 813-829.   DOI
20 Usui, N. and Ikenouchi, M. (1997), "The biological $CO_2$ fixation and utilization project by RITE(1): Highly-effective photobioreactor system", Energy Conv. Manage., 38, 487-492.   DOI   ScienceOn
21 Watanabe, Y., Ohmura, N. and Saiki, H. (1992), "Isolation and determination of cultural characteristics of microalgae which functions under $CO_2$ enriched atmosphere", Energy Convers. Manag., 33, 545-552   DOI   ScienceOn
22 Wilhelm, C. and Wild, A. (1982), "Growth and photosynthesis of Nanochlorum eucaryotum, a new and extremely small eucaryotic green alga", Z. Naturforsch C, 37c, 115-119.
23 Yang, J., Xu, M., Zhang, X.Z., Hu, Q., Sommerfeld, M. and Chen, Y. (2011), "Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance", Bioresour. Technol., 102, 159-165.   DOI   ScienceOn
24 Lepage, G. and Roy C.C. (1986), "Direct transesterification of all classes of lipids in a one-step reaction", J. Lipid Res., 27, 114-120.
25 Li, Y.G., Xu, L., Huang, Y.M., Wang, F., Guo, C. and Liu C.Z. (2011), "Microalgal biodiesel in China: Opportunities and challenges", Appl. Energy, 88, 3432-3437.   DOI   ScienceOn
26 Melis, A. (2009), "Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency", Plant. Sci., 177, 130-135.
27 Lutzu, G.A., Locci, A.M. and Cao G. (2012), "Effect of medium composition on the growth of Nannochloris eucaryotum in batch photobioreactors", J. Biobased Mater. Bio., 6, 94-100.   DOI
28 Mallick, N., Mandal, S., Singh, A.K., Bishai, M. and Dash, A. (2011), "Green microalga Chlorella vulgaris as a potential feedstock for biodiesel", J. Chem. Technol. Biotechnol., 87, 137-145.
29 Mata, T.M., Martins, A.A. and Caetano, N.S. (2010), "Microalgae for biodiesel production and other applications: A review", Renew Sustain. Energy, 14, 217-232.   DOI   ScienceOn
30 Menzel, K. and Wild, A. (1989), "A comparative investigation of some Nannochloris species (Chlorococcales) with particular reference to the systematic position of Nannochloris eucaryotum", Bot. Acta, 102, 152-158.   DOI
31 Mitra, M. and Melis, A. (2008), "Optical proprieties of microalgae for enhanced biofuels production", Optics Express, 16, 21807-21820.   DOI
32 Mulbry, W., Kondrad, S., Pizarro, C. and Kebede-Westhead, E. (2008), "Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers", Bioresour. Technol., 99, 8137-8142.   DOI   ScienceOn
33 Negoro, M., Shioji, N., Miyamoto, K. and Miura, Y. (1991), "Growth of microalgae in high $CO_2$ gas and effects of $SO_x$ and $NO_x$", Appl. Biochem. Biotechnol, 28/29, 877-886.
34 Novick, A. and Szilard, L. (1950), "Description of the Chemostat", Science, 112, 715-716.   DOI
35 Olguin, E.J. (2003), "Phycoremediation: Key issues for cost-effective nutrient removal processes", Biotechnol. Adv., 22, 81-91.   DOI   ScienceOn
36 Papazi, A., Makridis. P., Divanach. P. and Kotzabasis, K. (2008), "Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high $CO_2$ concentrations induce an intense biomass production", Physiol. Plantarum, 132, 338-349.   DOI   ScienceOn
37 Chen, C.T., Yeh, K.L., Aisyah, R., Lee, D.J. and Chang, J.S. (2011), "Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review", Bioresour. Technol., 102, 71-81.   DOI   ScienceOn
38 Phukan, M.M., Chutia, R.S., Konwar, B.K. and Kataki, R. (2011), "Microalgae Chlorella as a potential bio-energy feedstock", Appl. Energy, 88, 3307-3312.   DOI   ScienceOn
39 Radakovits, R., Jinkerson, R.E., Darzins, A. and Posewitz, M.C. (2010), "Genetic engineering of algae for enhanced biofuel production", Eukaryot. Cell., 9, 486-501.   DOI
40 SAG Sammlung Von Algenkulturen Gottingen (2008), Online document Medium recipe-version 10, http://epsag.netcity.de/pdf/media_and_recipes/06_Brackish_water_medium.pdf.
41 Cheng, J.J. and Timilsina, G.R. (2011), "Status and barriers of advanced biofuel technologies: A review, Renew", Energy, 36 3541-3549.   DOI   ScienceOn
42 Chisti, Y. (2007), "Biodiesel from microalgae", Biotechnol. Adv., 25, 294-306.   DOI   ScienceOn
43 Commission Regulation (EEC) $N^{\circ}$ 2568/91 (1991); Annex XA. http://eur-lex.europa.eu/LexUriServ/site/en/consleg/1991/R/01991R2568-20031101-en.pdf.
44 Concas, A., Lutzu, G.A, Pisu, M. and Cao, G. (2012), "Experimental analysis and novel modeling of semi-batch photobioreactors operated with Chlorella vulgaris and fed with 100 %(v/v) $CO_2$", Chem. Eng. J., 213, 203-213.   DOI   ScienceOn
45 Concas, A., Pisu, M. and Cao, G. (2010), "Novel simulation model of BIOCOIL photobioreactors for $CO_2$ sequestration with microalgae", Chem. Eng. J., 157, 297-303.   DOI   ScienceOn
46 Damiani, M.C., Popovich, C.A., Constenla, D. and Leonardi, P.I. (2010), "Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock", Bioresour. Technol., 101, 3801-3807.   DOI   ScienceOn
47 Dorval Courchesne, N.M., Parisien, A., Wang, B. and Lan, C.Q. (2009), "Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches", J. Biotechnol., 141, 31-41.   DOI   ScienceOn