• Title/Summary/Keyword: Strain Gage

Search Result 301, Processing Time 0.023 seconds

A Study on the Measurement of New Concept for the Contact Force between Rail and Wheel (신개념의 레일.차륜간 접촉력 측정에 관한 연구)

  • Hong, Yong-Ki;You, Won-Hee;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.806-811
    • /
    • 2007
  • The derailment is defined as phenomena in which the wheels run off the rail due to inordinate lateral force generated when wheel flange contacts with the rail. Derailment coefficient is typical standard assessing running safety and derailment. The traditional method measuring by strain gage adhered to wheels is very complicated and easy to fail. It also requires too much cost and higher measurement technique. Therefore it can hardly ensure safety because we can't confirm at which time we need to identify safety. In this paper, we principally researched the method measuring easily wheel load generated by contacts between wheel flange and the rail, and lateral force. Correlation of vibration and displacement which was related physical amounts of wheel load and lateral force, was investigated and analyzed through analysis, experiment and measurement. And it is presents new measurement method of derailment coefficient which can estimate derailment possibility only by movement of vibration and displacement, by which we understand the rate for acceleration and displacement to contribute wheel load and lateral force and compare actual data of wheel load and lateral force measured from wheel.

A Design and Implementation of Personal Vessel Monitoring System Based on Context Aware (상황인식 기반 개인 선박 상태감시시스템 설계 및 구현)

  • Shin, Do-Sung;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.112-118
    • /
    • 2011
  • Ship can be faced with more dangerous situations than ground vehicles due to the opened surroundings, sea. Therefore, it is very important to prevent the ship emergency by finding risk factor. In this paper, We propose context-aware monitoring system which that frequently check the condition of ship using the data that get through the installed sensor in the ship as gyro-sensor, strain-gage sensor. We analyzed sensor data through backpropagation algorithm and the Condition and Safety Information of sailing ship is transmitted to the crew's personal mobile device in the ship. Thus, moving crew can check the ship's condition in real time. As a result, we obtained about 95% accuracy for fire risk context and about 89% accuracy for body of Ship risk context in the simulated experiments.

Synchronization and identification of ship shaft power and speed for energy efficiency design index verification

  • Lee, Donchool;Barro, Ronald Dela Cruz;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.123-132
    • /
    • 2014
  • The maritime sector is advancing with dedicated endeavor to reduce greenhouse gas in addressing issues with regards to global warming. Since 01 January 2013, the International Maritime Organization (IMO) regulation mandatory requirement for Energy Efficiency Design Index (EEDI) has been in place and should be satisfied by newly-built ships of more than 400 gross tonnage and the Ship Energy Efficiency Management Plan (SEEMP) for all ships type. Therefore, compliance to this necessitates planning during the design stage whereas verification can be carried-out through an acceptable method during sea trial. The MEPC-approved 2013 guidance, ISO 15016 and ISO 19019 on EEDI serves the purpose for calculation and verification of attained EEDI value. Individual ships EEDI value should be lower than the required value set by these regulations. The key factors for EEDI verification are power and speed assessment and their synchronization. The shaft power can be measured by telemeter system using strain gage during sea trial. However, calibration of shaft power onboard condition is complicated. Hence, it relies only on proficient technology that operates within the permitted ISO allowance. On the other hand, the ship speed can be measured and calibrated by differential ground positioning system (DGPS). An actual test on a newly-built vessel was carried out to assess the correlation of power and speed. The Energy-efficiency Design Index or Operational Indicator Monitoring System (EDiMS) software developed by the Dynamics Laboratory-Mokpo Maritime University (DL-MMU) and Green Marine Equipment RIS Center (GMERC) of Mokpo Maritime University was utilized for this investigation. In addition, the software can continuously monitor air emission and is a useful tool for inventory and ship energy management plan. This paper introduces the synchronization and identification method between shaft power and ship speed for EEDI verification in accordance with the ISO guidance.

Development of Load-Cell-Based Anemovane (로드셀형 풍향풍속계 개발)

  • Jeon, Byeong Ha;Han, Dong Seop;Lee, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.685-691
    • /
    • 2013
  • A load-cell-type anemovane operates based on wind vector properties. The developed load-cell-type anemovane is of a fixed type in which the wing does not rotate, unlike in the case of existing anemovanes. The load-cell-type anemovane is required to accurately derive the correlation between the load ratio and the wind direction in order to develop a qualified product. This is because the load ratio repeats every $90^{\circ}$ owing to the use of four load cells, and its value varies nonlinearly according to the wind direction. In this study, we compared analytical results with experimental results. Fluid analysis was carried out using ANSYS CFX. Furthermore, the prototype was tested using a self-manufactured wind tunnel. The wind direction was selected as the design variable. 13 selected wind direction conditions ranging from $0^{\circ}$ to $90^{\circ}$ with an interval of $7.5^{\circ}$ for analysis were defined. Furthermore, 10 wind direction conditions with an interval of $10^{\circ}$ for the experiment were defined. We derived the relations between the pressure ratio and the wind direction through the experiment and fluid analysis.

Development of an Input Force Measuring Method for Vehicle Tests (실차 주행중 입력하중 계측 기법 개발)

  • Lee, Kwang Chun;Kim, Seung Han;Lee, Kang In;Bae, Byung Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.143-147
    • /
    • 2017
  • In this study, a driving load measuring method has developed without utilizing WFT. To measure the driving load, we developed a three-axis load cell with a strain gage. A method to verify the performance of load cells was developed. A system to measure the input load was proposed, and it was verified by evaluation. The measurement error of the impact road surface was found to be less than 20%. However, except under impact road surface conditions, the proposed system can be applied for actual vehicle input load measurement. The influence of tire evaluation tests were carried out through the handling verification evaluation. The input load measurement methods proposed in the present study make performance verification possible without using WFT.

Estimation of the Axial Stress in High-Tension Bolt by Acoustoelastic Method (음탄성법을 이용한 고장력 볼트의 축응력 평가)

  • Chun, Hae-Hwa;Lee, Tae-Hoon;Jhang, Kyung-Young;Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.285-290
    • /
    • 2006
  • The evaluation of clamping condition has been regarded as the main issue in the safety-maintenance of the clamped high-tension bolts. For this, this paper proposes a method to estimate the axial stress by measuring the TOF (Time-Of-Flight) of ultrasonic wave, which is based on the acoustoelasticity or the dependency of sound speed on the stress. In this method, however, the variation of sound speed within the range of stress induced under the field condition is very small, and thus the accuracy of the TOF measurement is important. We adopted the phase detection method using tone-burst ultrasonic wave to measure the precise TOF. In order to verify the usefulness of the proposed method experiments are carried out and the results were compared with the stress measured by the strain gage. The results show good agreement with each other, and from these we can conclude that the proposed method is highly useful fnr the evaluation of clamping condition in the clamped high-tension bolts.

Full Scale Measurement Data Analysis of Large Container Carrier with Hydroelastic Response, Part II - Fatigue Damage Estimation (대형 컨테이너 선박의 유탄성 실선 계측 데이터 분석 Part II - 피로 손상도 추정)

  • Kim, Byounghoon;Choi, Byungki;Park, Junseok;Park, Sunggun;Ki, Hyeokgeun;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • Concerns are emerging in marine industry on the additional fatigue damages induced by hydroelasticity, and large container carriers, among others, are considered to be susceptible to this hydroelastic response due to its large size, deck openings and high speed. This study focuses on the fatigue damage estimation of 9,400TEU container carrier based on the full scale measurement data via long-base strain gage installed on the ship. Some correlation analyses have been also done to check whether there was significant torsional response during the voyage. Direct cycle counting method was used to derive stress histogram and the long-term fatigue damage was estimated based upon that analyzed data. It turned out that the fatigue damage of this particular ship during the measurement period increased by more than 60% due to the hydroelastic response of the hull, and main contribution is considered to come from vertical bending mode.

An Experimental Study of Cyclic Seismic Behavior of Steel Moment Connections Reinforced with Ribs (리브로 보강된 철골 모멘트 접합부의 내진거동에 관한 실험적 연구)

  • Lee, Cheol Ho;Lee, Jae Kwang;Jung, Jong Hyun;Oh, Myeong Ho;Koo, Eun Sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.499-508
    • /
    • 2002
  • A simple design method for rib-reinforced seismic steel moment connections has been recently proposed based on the equivalent strut model. An experimental program was implemented to verify the proposed design method, as well as develop the schemes that will prevent cracking at the rib tip where stress concentration was evident. All specimens designed using the proposed method were able to develop a satisfactory connection plastic rotation of 0.04 radian. In addition to rib reinforcement, slight beam flange trimming pushed the plastic hinging and local buckling of the beam away from the rip tip and effectively reduced cracking potential at the rib tip. Using strain gage readings, the strut action of the rib and resulting reverse shear in the beam web were also experimentally identified.

The Evaluation of a General Purpose Bale System Performance and Its Bale Quality

  • Chang, Dongil;Chung, Sun-Ok;Cho, Byoung-Kwan;Park, Dongseok;Sung, Namseok;Kim, Jungchul;Lee, Inhyun;Park, Jutaek
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.223-227
    • /
    • 2013
  • Purpose: The objectives of this study were to develop a general purpose baler system that is appropriate for the domestic forage cultivation environment and operated by the medium size tractor for production of bale silage made of green forage crops, and to test its performance. Methods: In a first experiment, the time of formation per one bale and densities of bales that are produced from bale system, were measured. In a second experiment, power requirement was measured by a power measurement system manufactured during bale system work. Results: The power measurement system was constructed with strain-gage sensors to measure torque of a PTO axle and proximity sensor to measure rotating speed of a PTO axle. Thus, the power requirement was calculated by PTO torque and PTO rotating speed. For evaluation of bale quality, the samples of bales were analyzed for contents of moisture, ADF, NDF and TDN. Conclusions: If the results of this study will be utilized, the coefficient of utilization of agricultural machinery will be increased by the operation of a medium size tractor that is a major disseminated tractor in farm, and it will contribute tremendously to make a forage production base for livestock farms.

Effects of Various Growing Conditions of the Mat-type Seedlings on the Cutting forces for ower Rice Transplanter. (Mat묘의 육모조건이 이앙기의 소요전단력에 미치는 영향)

  • 허민근;김성래
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.48-57
    • /
    • 1979
  • In order to obtain a standard reference for designing an adequate power rice transplanter, the cutting forces depending upon variety of seedling, sowing density, seedling age and soil moisture content of mat-type seedling were measured by the rice transplanter installed with force measuring device of dynamic strain gage system in the laboratory. The result of this study are summarized as follows : 1. Cutting velocity and acceleration transplanting hoe obtained from jinematic analysis of planting mechanism was 1.32m/sec and 81.5m/$sec^2$ when planting crank-shaft rpm was 160. 2. Little difference between cutting forces on 30-days old seelings of japonica and Indica type was observed, as the cutting forces determined were 2.0kg per hill for Japonica type and 2.1kg per hill for Indica type. 3. Cutting forces determined on 40-days old seedlings were 2.5kg, 2.3kg, 3.1kg and 2.9kg per hill for Milyang No.15, Tongil, Akibare and Milyang No.23 compared to the other varieties. 4. The cutting force was not greatly affected by the sowing densities , only five percent of differences were observed epending upon the sowing densities. 5. Cutting forces were 2.7kg and 2.0kg per hill on 40-days old seedlings and 30-days old seedlings respectively. About 38 percent of more forces was required in cutting 40-days old seedling than in cutting 30-days old seedlings. 6. More cutting forces were required as soil moisture content of mat-type seedling was decreased. 7. Root length after cutting by the planting hoe and their relationships with soil moisture content on 30-days old seedlings, are as follows ; $y=4.147-11.384x+ 28.854x^2$ where , $y$=root length after cutting. (cm) , $x$=soil ture content of mat type seedlings.(%, d.b.) 8. Cutting forces were varied with the width of cuttings ; those on 40-days old mat type seedlings were 2.7kg and 2.2kg per hill when cutting with 14 mm and 10mm of width respectively, about 32 percent of more forces was required when cuting with 14mm of width compared to 10mm of width.

  • PDF