• 제목/요약/키워드: Strain Distribution

검색결과 1,522건 처리시간 0.026초

평면변형률 시험에서 디지털 이미지 해석을 통한 정규압밀 점성토의 파괴거동 분석 (Failure Mechanism Evaluation in Normally Consolidated Cohesive Soils by Plane Strain Test with Digital Image Analysis)

  • 곽태영;김준영;정충기
    • 한국지반공학회논문집
    • /
    • 제32권3호
    • /
    • pp.49-60
    • /
    • 2016
  • 일반적으로 흙의 파괴는 전단 변형이 집중되는 영역인 전단면의 형성과 발달에 의해 발생한다. 정규압밀 점성토의 파괴거동을 확인하기 위해 시료 내부의 변형거동 분포에 대해 평가가 필요하다. 본 연구에선 재성형된 카올리나이트 시료에 대해 평면변형률 시험을 수행하였으며, 전단 과정에서 일정 변형률 간격에서 디지털 이미지 해석을 수행하였다. 시험 결과로 도출된 응력-변형률 결과를 통해 4개의 단계를 결정하여 시료의 변형거동과 전단면 특성을 평가하였다.

Stress and Strain for Perated Tensile Specimen -Experiemental Measurements and FEA Simulations

  • Um, Gi-Jeung;Kim, Hyoung-Jin
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
    • /
    • pp.489-494
    • /
    • 2006
  • The strain distribution in the vicinity of a hole in a tensile strip was measured using an image correlation method. The objective of this study is to evaluate the capability of predicting the strain component response using a constitutive model that was developed for use with paper materials. The need for a special constitutive model for paper derives from the characteristics of pronounced anisotropy and the fact that the material behaves differently under compressive loading than it does under tensile loading. The results of the simulation showed that predictions of strain distribution around the hole were in agreement with the experimental result trends, however, the agreement deteriorated as the edge of the hole was reached. It was observed that there is extensive inelastic strain that takes place around the hole prior to failure of the tensile strip. The simulation results showed that any difference between tensile and compressive behavior that may exist for paper material does not have any significant effect for the problem of this study because the level of compressive stress is quite low in comparison with compressive failure values.

  • PDF

저탄소 Dual Phase강의 가공시효에 미치는 탄소유효확산 및 전위분포의 영향 (Effects of Dislocation Distribution and Carbon Effective Diffusion on Strain Aging Behavior of a Low Carbon Dual Phase Steel)

  • 유상협;정기채;홍기하;박경태
    • 소성∙가공
    • /
    • 제30권5호
    • /
    • pp.226-235
    • /
    • 2021
  • The strain aging behavior of a low carbon dual phase steel was examined in two conditions: representing room temperature strain aging (100 ℃ × 1 hr after 7.5 % prestrain) and bake hardening process (170 ℃ × 20 min after 2 % prestrain), basing on carbon effective diffusion and dislocation distribution. The first principle calculations revealed that (Mn or Cr)-vacancy-C complexes exhibit the strongest attractive interaction compared to other complexes, therefore, act as strong trapping sites for carbon. For room temperature strain aging condition, the carbon effective diffusion distance is smaller than the dislocation distance in the high dislocation density region near ferrite/martensite interfaces as well as ferrite interior considering the carbon trapping effect of the (Mn or Cr)-vacancy-C complexes, implying ineffective Cottrell atmosphere formation. Under bake hardening condition, the carbon effective diffusion distance is larger compared to the dislocation distance in both regions. Therefore, formation of the Cottrell atmosphere is relatively easy resulting in to a relatively large increase in yield strength under bake hardening condition.

스테인리스 강 STS305의 디프 드로잉 가공에 관한 실험적 연구 (Experimental study on the severe deep drawing for complex cylindrical housing of STS 305 stainless steel)

  • 김두환
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.439-444
    • /
    • 1998
  • Recently many automotive parts have been made with stainless steels by deep drawing processes, But there are various problems occurred in deep drawing works of stainless steels compared with low carbon steels. For the severe deep drawing of complex cylindrical housing optimum process planning is required to eliminate intermediate annealing improve shape accuracy and maintain surface integrity without drawing defects such as tears wrinkles and scratches or galling. Therefore in this study a sample process planning of the severe of the severe deep drawing process is applied to a complex cylindrical housing needed for a 6 multi-stepped deep drawing of type STS 305 . A series of experiments are performed to investigate optimum process variables such as drawing rate radius and clearance. Through experiments the variations of the thickness strain distribution and hardness distribution in each drawing step are observed. Also the effects of other factors on formability such as drawing oil, blank holding force and die geometry are examined and discussed.

  • PDF

냉연 형상 교정시 Stress 천이 현상 연구 (The study of stress distribution of cold rolled Steel sheets in tension leveling process)

  • 최환택;황상무;구진모;박기철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.74-79
    • /
    • 2004
  • The shape of cold rolled steel sheets is the degree of flatness, and the flatter, the better. Because undesirable strip shapes of cold rolled steel sheets can affect not only visible problem but also automatic working process in customer's lines, the requirement of the customers is more and more stringent. So we usually used the tension leveler to make high quality of strip flatness. For the improvement of the quality of strip flatness, this report developed three-dimensional FEM (Finite Element Method) simulation model, and analysis about the strain and stress distribution of strip in the tension leveling process.

  • PDF

균일한 두께분포를 위한 신장/블로 공정을 이용한 초소성 성형 공정설계 해석 (Analysis of Superplastic Forming Process Design Using a Combined Stretch/Blow Process for Uniform Thickness Distribution)

  • Hong, S.S.;Lee, J.S.;Kin, Y.H.
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.129-137
    • /
    • 1994
  • A rigid-viscoplastic finite element method has been used for modeling superplastic stretch/blow process design to improve thickness distribution. Punch velocity-time relationship of the stretch forming and pressure-time cycle of the blow forming for a given strain rate are calculated. A superplastic material is assumed to be isotropic and a plane-strain line element based on membrane approximation is employed for the formulation. The effects of the width, corner radius and height of the punch during stretch forming are examined for the final thickness distribution, and the process design to improve thickness distribution can be established.

  • PDF

사면보강재의 강우 및 온도에 의한 변형 해석 (Deformation Estimation of Slope Reinforced Materials by Rain and Temperature)

  • 홍성진;장기태;한희수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.643-650
    • /
    • 2002
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure zone resulted from weathering effect and other factors. The FBG sensor system is used to estimate the correlations between the temperature and the slope in Yunhwajae, and to find a failure zone in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the correlation. The zone of high temperature fluctuation can be regarded as one of the possible sliding zone due to the weathering effect while the constant temperature depth of the ground, if exists, would not be relatively affected by the weathering process.

  • PDF

FCC계 고엔트로피 합금의 냉간 인발 유한요소해석 및 실험적 검증 (Finite Element Analysis and Experimental Verification for the Cold-drawing of a FCC-based High Entropy Alloy)

  • 조한솔;배성준;나영상;김정한;이동근;이광석
    • 소성∙가공
    • /
    • 제29권3호
    • /
    • pp.163-171
    • /
    • 2020
  • We present a multi-step cold drawing for a non-equiatomic Co10Cr15Fe25Mn10Ni30V10 high entropy alloy (HEA) with a simple face-centered cubic (FCC) crystal structure. The distribution of strain in the cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wires was analyzed by the finite element method (FEM). The effective strain was expected to be higher as it was closer to the surface of the wire. However, the reverse shear strain acted to cause a transition in the shear strain behavior. The critical effective strain at which the shear strain transition behavior is completely shifted was predicted to be 4.75. Severely cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wires up to 96% of the maximum cross-sectional reduction ratio were successfully manufactured without breakage. With the assistance of electron back-scattering diffraction and transmission electron microscope analyses, the abundant deformation twins were found in the region of high effective strain, which is a major strengthening mechanism for the cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wire.

Bacteriophage의 감수성에 의한 수도백엽고병균의 계통분류 (Classification of strains of Xanthomonas oryzae on the basis of their susceptibility against bacteriophage)

  • 이경휘;정하원
    • 한국응용곤충학회지
    • /
    • 제4권
    • /
    • pp.29-32
    • /
    • 1965
  • (1) 한국각지에서 분리한 수도백엽고병균 30균주를 일본의 4계통의 Bacteriophage를 공시하여 분류하여 본 결과 A' 및 B계통의 다음 2종류로 분류하였다. A' 계통 $OP_1$$OP_2$에 감수성이나 $OP_1h$, $OP_1h_2$에는 저항성이었다. B계통 : $OP_1h$, $OP_1h_2$$OP_2$ 감수성이나 $OP_1$에 저항성이었다. A'계통은 $OP_1_2$에 저항성이나 일본의 A 계통은 $OP_1h_2$에도 감수성이었다는 점이 상이하였다. (2) A' 계통균이 국내에 가장 널리 분포하고 있었으며, 계통간의 지역별분포상황은A'계통균이 경기이남에 않았으나 B 계통균은 수원 및 그 이북지방에 분포하고 있었다. (3) 동일품종간에 있어 균의 계통분포는 균일성이 없었다.

  • PDF

A strain-based wire breakage identification algorithm for unbonded PT tendons

  • Abdullah, A.B.M.;Rice, Jennifer A.;Hamilton, H.R.
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.415-433
    • /
    • 2015
  • Tendon failures in bonded post-tensioned bridges over the last two decades have motivated ongoing investigations on various aspects of unbonded tendons and their monitoring methods. Recent research shows that change of strain distribution in anchor heads can be useful in detecting wire breakage in unbonded construction. Based on this strain variation, this paper develops a damage detection model that enables an automated tendon monitoring system to identify and locate wire breaks. The first part of this paper presents an experimental program conducted to study the strain variation in anchor heads by generating wire breaks using a mechanical device. The program comprised three sets of tests with fully populated 19-strand anchor head and evaluated the levels of strain variation with number of wire breaks in different strands. The sensitivity of strain variation with wire breaks in circumferential and radial directions of anchor head in addition to the axial direction (parallel to the strand) were investigated and the measured axial strains were found to be the most sensitive. The second part of the paper focuses on formulating the wire breakage detection framework. A finite element model of the anchorage assembly was created to demonstrate the algorithm as well as to investigate the asymmetric strain distribution observed in experimental results. In addition, as almost inevitably encountered during tendon stressing, the effects of differential wedge seating on the proposed model have been analyzed. A sensitivity analysis has been performed at the end to assess the robustness of the model with random measurement errors.