• 제목/요약/키워드: Straight-beam element

검색결과 63건 처리시간 0.025초

Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core

  • Sudhakar, V;Gopalkrishnan, S;Vijayaraju, K
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.657-678
    • /
    • 2018
  • Sandwich structures are well known for their use in aircraft, naval and automobile industries due to their high strength resistance with light weight and high energy absorption capability. Sandwich beams with soft core are very common and simple structures that are employed in day to day general use appliances. Modeling and analysis of sandwich structures is not straight forward due to the interactions between core and face sheets. In this paper, formulation of Super Convergent finite elements for analysis of the sandwich beams with soft core based on Euler Bernoulli beam theory are presented. Two elements, Eul4d with 4 degrees of freedom assuming rigid core in transverse direction and Eul10d with 10 degrees of freedom assuming the flexible core were developed are presented. The formulation considers the top, bottom face sheets and core as separate entities and are coupled by beam kinematics. The performance of these elements are validated by results available in the published literature. Number of studies are performed using the formulated elements in static, free vibration and wave propagation analysis involving various boundary and loading conditions. The paper highlights the advantages of the elements developed over the traditional elements for modeling of sandwich beams and, in particular wave propagation analysis.

Nonlinear Flexural Analysis of PSC Test Beams in CANDU Nuclear Power Plants

  • Bae, In-Hwan;Choi, In-Kil;Seo, Jeong-Moon
    • Nuclear Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.180-190
    • /
    • 2000
  • In this study, nonlinear analyses of prestressed concrete(PSC) test beams for inservice inspection of prestressed concrete containments for CANDU nuclear power plants are presented. In the analysis the material nonlinearities of concrete, rebar and prestressing steel are used. To reduce the numerical instability with respect to the used finite element mesh size, the tension stiffening effect has been considered. For concrete, the tensile stress-strain relationship derived from tests is modified and the stress-strain curve of rebar is assumed as a simple bilinear model. The stress-strain curve of prestressing steel is applied as a multilineal curve with the first straight line up to 0.8fpu. To prove the validity of the applied material models, the behavior and strength of the PSC test specimens tested to failure have been evaluated. A reasonable agreement between the experimental results and the predictions is obtained. Parametric studies on the tension stiffening effects, the impact of prestressing losses with time, and the compressive strength of concrete have been conducted.

  • PDF

정현상 비대칭으로 Taper진 부재의 임계하중과 고유진동수와의 관계 (The Relationship between Critical Load and Frequency of Sinusolidally Non-symmetrically Tapered Member)

  • 이혁;홍종국;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.59-66
    • /
    • 2000
  • It is generally known that the lateral frequency( ω) of the vibration of a prismatic beam-column decreases according to the rele (equation omitted) (ω/sub 0/=natural frequency). In the cases of tapered members, the determination of P/ sub/ cr/(elastic critical load) and ω/ sub 0/ are not easy. Furthermore, the relationship between the compressive load and frequency can not be determined by the conventional analytical method. The axial force-frequency relationship of sinusolidally non-symmetrically tapered members with different shapes were investigated using the finite element method. To obtain the two eigenvalues, the axial thrust was increased step by step and the corresponding frequency was calculated. The result indicated that the axial thrust of the elastic critical load ratio and the square of the frequency ratio can be approximately represented in any case by a straight line. Finally, the linear relationship is also applicable to the sinusolidally non-symmetrically tapered member.

  • PDF

시뮬레이션에 의한 유체 유동 파이프 계의 곡관부의 각도 변화에 따른 고유진동수 고찰 (A Simulation for the Natural Frequencies of Curved Pipes Containing Fluid Flow with Various Elbow Angles)

  • 최명진;장승호
    • 한국시뮬레이션학회논문지
    • /
    • 제10권1호
    • /
    • pp.63-65
    • /
    • 2001
  • To investigate the natural frequencies of curved piping systems with various elbow angles conveying flow fluid, a simulation is performed considering Initial tension due to the inside fluid. The system is analyzed by finite element method utilizing straight beam element. Elbow part is meshed using 4 elements, and the initial tension is considered by inserting equivalent terms into the stiffness matrix. Without considering the initial tension, the system becomes unstable, that is, the fundamental natural frequency approaches to zero value fast, as the flow velocity reaches critical value. With the initial tension terms, the system becomes stable where there is no abrupt decrease of the fundamental natural frequency. The change rate of the natural frequency with respect to the flow velocity reduces. As elbow angle increases, the system becomes stiffer, then around 150 degrees of the elbow angle the natural frequency has the largest value, the value decreases after the angle of the largest natural frequency. When angle is between 170 degrees and 179 degrees, the natural frequency is very sensitive. This means that small change of angle results in great change of natural frequency, which is expected to be utilized in the control of the natural frequency of the piping system conveying flow fluid.

  • PDF

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

P.S.C거더 교량의 적정 가로보 설계 (An Optimal Design of Cross Beam of P.S.C Girder Bridge)

  • 최창근;김경호;이계희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.389-396
    • /
    • 2000
  • A three-dimensional finite element dynamic analysis was conducted to evaluate the effects of reducing cross beams from a simply supported straight P.S.C girder bridge. Two analyses were performed on the P.S.C girder bridge; one with 7 cross beams which is commonly used as current standard, and the other with 3 cross beams. A frequency analysis was conducted first in order to establish the dynamic characteristics of the bridge and determine an appropriate time step to use in the time history analyses. To assess the function and effectiveness of the cross beams, time history analysis was conducted for aforementioned two analysis cases. In the analysis, the complete model was subjected to a loading condition corresponding to the one passing truck loading. Several results of deflection, bending moment and shear forces were compared for two cases. From the analysis results, reduction of cross beams was found to have only a minimum effect on the response of the bridge. The maximum deck slab bending moment was found to decrease. This decrease should result in smaller flexural crack widths in the deck slab, which may lead to an improved deck performance.

  • PDF

굽힘 및 비틀림 연성 효과를 고려한 대형 풍력 터빈 블레이드의 강제 진동 및 하중 해석 (Forced Vibration and Loads Analysis of Large-scale Wind Turbine Blades Considering Blade Bending and Torsion Coupling)

  • 김경택;박종포;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.256-263
    • /
    • 2008
  • The assumed modes method is developed to derive a set of linear differential equations describing the motion of a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method gives good results and it can be used fur modeling and the forced vibration analysis including the coupling effect of wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be considered as straight non-uniform beams with built-in pre-twist.

  • PDF

대형 선박의 파이프 루프 설계식 개발(II) (The Development of Design Formulas for Pipe Loops Used in Large Vessels(II))

  • 박치모;양박달치;이종훈
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.158-163
    • /
    • 2009
  • Many longitudinal pipes in ships are subject to considerable loads, caused by hull girder bending in the ships and/or thermal loads in some special pipes through which fluids with highly abnormal temperatures are conveyed. As these loads may cause failure in the pipes or their supporting structures, loops have been widely adopted to prevent such failure, based on the idea that they can lower the stress level in a pipe byabsorbing some portion of these loads. But as the loops also have some negative effects, such as causing extra manufacturing cost, deteriorating the function of the pipe, and occupying extra space, the number and dimensions of these loops need to be minimized. This research developed design formulas for pipe loops, modeling them as a spring element, for which the axial stiffness is calculated based on the beam theory, incorporating the flexibility effect of the straight portion of the pipe. The accuracy of the proposed design formulas was verified by comparing two results obtained from the proposed formulas and MSC/NASTRAN. This paper concludes with a sample application of the proposed formulas, showing their efficiency.

직선늑골형선단면(直線肋骨型船斷面)을 가지는 주상체(柱狀體)의 자유수면(自由水面)에서의 상하동(上下動)에 수반(隨伴)되는 부가질량(附加質量)(속)(續) (Added Mass of Two Dimensional Cylinders with the Sections of Straight Frames Oscillating Vertically in a Free Surface)

  • 황종흘
    • 대한조선학회지
    • /
    • 제6권2호
    • /
    • pp.1-4
    • /
    • 1969
  • 직선늑골(直線肋骨) 및 단일배골(單一背骨)을 가지는 배의 단면(斷面)과 동일(同一)한 단면(斷面)을 가지는 2차원(次元) 주상체(柱狀體)가 고진동수(高振動數)로 이상유체(理想流體)의 자유수면(自由水面)에서 상하동(上下動)을 할 때의 부가질량계수(附加質量係數)($K_2$)를 특정(特定)한 선저각(船底角)을 지배(支配)하는 계수(係數)($\beta$)의 각각(各各)에 대(對)해서 폭일흘수비(幅一吃水比)(B/H)와 단면적계수(斷面績係數)($\sigma$)로 표시(表示)하였으며 Lewis form 및 김(金)이 제시(提示)한 곡선늑골(曲線肋骨) 및 배골(背骨)을 가지는 배의 단면(斷面)과 동일(同一)한 단면(斷面)의 2차원주상체(次元柱狀體)에 대(對)한 결과(結果)와 비교검토(比較檢討)하였다.

  • PDF

코너부 곡률을 고려한 선박용 파이프 루프 설계식 개발 (Development of Design Formulas for Pipe Loops Used in Ships Considering the Curvature of Corners)

  • 박치모;양박달치
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.91-99
    • /
    • 2009
  • Many longitudinally arranged pipes in ships are subject to considerable displacement loads caused by the hull girder bending of ships and/or thermal loads in some special pipes through which fluids with highly abnormal temperatures are conveyed. As these loads may cause failure in the pipes or their supporting structures, loops have been widely adopted as a measure to prevent such failure, with the idea that they can lower the stress level in a pipe by absorbing some portion of these loads. But since such loops have some negative effects, such as causing extra manufacturing cost and occupying extra space, the number and dimensions of the loops need to be minimized. This research developed design formulas for pipe loops, modeling them as a spring element, for which the axial stiffness is calculated based on the beam theory, incorporating the effects of the curvature of loop corners and the flexibility of the straight portion of the pipe. The accuracy of the proposed design formulas was verified by comparing two results respectively obtained by the proposed formulas and MSC/NASTRAN. The paper ends with a sample application of the proposed formulas showing their efficiency.