Forced Vibration and Loads Analysis of Large-scale Wind Turbine Blades
Considering Blade Bending and Torsion Coupling

AAYT - MFEx - o) FAns

Kyung-Taek Kim, Jong-Po Park and Chong-Won Lee
Key words: wind turbine blade(F 3 E{#l 2] ©] =), coupled vibration(4] 21 5), aeroelastic modelling(F B/ =3 3})

ABSTRACT

The assumed modes method is developed to derive a set of linear differential equations describing the motion of
a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various
wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is
clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element
Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method
gives good results and it can be used for modeling and the forced vibration analysis including the coupling effect of
wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be

considered as straight non-uniform beams with built-in pre-twist.

1. INTRODUCTION

For economic reasons, wind turbines of today are
being designed to increase the rotor diameter as much as
possible {11,[21,[3]. As a consequence, the wind turbine
blades are being designed larger and more flexible than
ever before. And the flexibility of the blades has
continued to increase to the point where their dynamic
behavior could cause serious structural problems, such as
resonance or instability [4]. Accordingly, dynamic
characteristics of the wind turbine blades have become
much more important in modern wind turbine design and
loads analysis. For this season, the present work is
devoted to developing an accurate and efficient
aeroelastic response prediction method for loads analysis
of large-scale wind turbines with flexible blades.

Many researches have been performed on structural
model of non-uniform beam with built-in pre-twist. The
differential equations of motion for coupled bending and
torsion of a pre-twisted non-uniform rotor blade were
derived [5]. Hodges and Dowell [6] also developed the
nonlinear partial differential equations of motion for a
pre-twisted helicopter blade. Kallesge [7] extended
Hodges and Dowell’s equations of motion, by including
the effect of gravity, pitch action and varying rotor speed.
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However, since these differential equations of motion
can hardly be solved exactly, either the solutions to
special sub-cases of the above problem or approximate
solutions have been attempted by many investigators.
The integrating matrix method has been introduced to
determine the natural vibration characteristics of rotor
blade [8]. Murthy [9],[10] used the transmission matrix
method to obtain the solutions for the general case.
Besides, reference [11] contains a review of several
approximate methods such as the Myklestad method, the
Galerkin method, the Rayleigh-Ritz method, the finite
element method (FEM), etc.

Among the previous methods cited above, FEM is
widely used for the structural, fluid flow and heat
transfer areas and it may produce quite useful results for
realistic modeling of wind turbine rotors with anisotropic
blades. But, due to the high computational cost and the
complicated final system matrix, the FEM is found to be
not suitable for preliminary design, performance
optimization and controller design [12].

In the present paper, the assumed mode method that
coalesces with the Lagrange’s equation is developed to
derive the mathematical model that describes the coupled
bending and torsional vibration of the wind turbine
blades whose lower modes are of interest. A feature of
the assumed mode method is that it is computationally
efficient and that it would offer easy understanding of the
physical characteristics of the system, not requiring the
large number of degrees of freedom as required in FEM
[10]. And it is well-known that the Blade Element
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Momentum (BEM) is the most common engineering
theory for computation of aerodynamic forces and most
wind turbine structural design codes adopt the BEM in
blade aerodynamic performance simulation [13]. For this
reason, the aerodynamic forces are determined based on
BEM theory in this work.

2. ANALYSIS MODEL

Consider a rotating inextensible wind turbine blade as
shown in Fig. 2-1. It is assumed that the blade is a
rotating pre-twisted beam with non-uniform cross-
section and the root of the blade is clamped at the rigid
hub of radius 4 and the shear and the elastic centre of the
blade are assumed to coincide. Since the wind turbine
blades can be well represented as a slender beam and
only the low frequency vibration modes are of interest,
we have adopted Euler beam theory not taking the
anisotropic and warping effects into account. But, if
necessary, the elastic energy could instead be described
with the more accurate and detailed beam theory without
difficulty.

2.1 Coordinate System

Figure 2-1 shows the blade rotating at 2 in the rotor
plane. The Z-axis of the reference frame, O-XYZ whose
origin is located at the center of the rotor hub, points
upwind and the X, F-axis spans the rotor plane, with the
X-axis pointing downward. Since the tower top and yaw
position are assumed fixed, the reference frame O-XYZ
becomes an inertial frame which is appropriate for
representing the total forces and moments on the rotor.

The reference frame R-xyz is attached at the blade
root and rotates with the blade, such that the x- and z-
axes are aligned with the pitch axis of the blade and the
Z-axis, respectively. Then the elastic deformations of
blades are defined simply as the motions relative to the
rotating reference frame R-xyz and the forces and
moments acting on the blades can be resolved in a
rotating coordinate system with respect to the local blade
cross-section. This approach is practical when the
vibrations of the blades themselves are considered.
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Figure 2-1. Global coordinate system: incrtial frame O-XYZ
and rotating frame R-xyz

An arbitrary cross-section of the blade looking
outward along the x-axis is shown in Fig. 2-2. The
reference frame P-&nd is fixed at the elastic axis of the
blade. The #- and {-axes, which are the elastic principle
axes of the blade section, are rotated by the angle of
B8+, relative to the x-y plane, where 6, and f are the
blade pitch angle and the pre-twist angle, respectively,
and & is the time-dependent torsional deflection angle.
The position of the elastic axis P in the reference frame
R-xyz is given by (x, v, w), where v and w are the
displacement from the undeformed position in the y- and
z-direction, respectively. The independent variables ¢ and
x are the time and distance from the root of the blade
measured along the elastic axis. The centre of mass is
assumed to be located at G and the mass eccentricity
from the elastic axis is given by ¢, and e, in the #- and {-
direction, respectively.
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Figure 2-2. Local coordinate system: blade fixed frame
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2.2 Energy Functions and Virtual Work

2.2.1 Kinetic Energy

The positions of the point G before and after
deformation in the cross-sectional plane are shown in Fig.
2-2. In the reference frame, R-xyz, the kinetic energy of
the blade can be written as

1
KE:;ﬂmw,%+4m,mJa @-1)

where Vg is the linear velocity vector of the mass center
G, @ is the angular velocity vector of the reference
frame P-¢ n { with respect to the frame O-X7Z, [ is the

blade length and, m and J, are the distributed mass and
the mass moment of inertia of the blade, respectively.
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2.2.2 Potential Energy

The elastic strain energy of the pre-twisted blade
undergoing the coupled flap-wise bending, lead-lag
bending, and pitch-wise torsion is can be written a

PE, = % [UEL, - ooy + EL -0 @-2)
ot 2B, W' V" + GJ - (§) 1dx

where £1,, EI, and El,, are the flexural rigidity, and GJ is
the torsional rigidity of the blade.

The potential energy associated with the centrifugal
stress and gravity fields measured in the rotating frame
R-xyz is described as

Pe =3 [IT-HO + 0 4 2mg sin(e.. (g
o {v—(e,sinf+e cos6) g}ldx

where T is the axial force component of the blade, given
by

T=[m{(x+h @ +geos(@n)}dx @4

From Eqgs. (2) and (3), the total potential energy of
the blade is given by

PE = PE, + PE,j, @-5)

2.2.3 Virtual Work

Figure 2-3 and 2-4 show the velocity and
aerodynamic force components in the plane of a blade
cross-section at distance of x from the blade root.
According to the BEM theory, each blade element is
modeled as a two-dimensional airfoil meaning that span-
wise flow is neglected and thus, the forces acting on the
blade element are essentially two-dimensional [1], [2].

From Fig. 2-3, the resultant wind velocity relative to
the blade element can be written as

V= V,(1-a)+w P +{Q2(x+h)(1+a')+v}* (2-6)

where a and g' are the axial and tangential induction

factors whose thorough derivation is given in most wind
turbine design handbooks [2].

The aerodynamic forces acting on the blades are
governed by the geometry of the flow, or better known as
the angle of attack. Since the blade element includes a
torsional degree of freedom, the angle of attack is
determined by the inflow velocity and the velocity of the
blade’s motion at the collocation point CP, which is
located in the three-quarter chord length from the leading
edge of the airfoil [4]. Thus the angle of attack « is

then given by

- Vy(1-a)+vWw—-c(3/4-a, ) cos(d+0)¢
T QGemrar i c(3/d-a,) @+ 009 )

—g-0
2-7

where ¢ represents the chord length and the non
dimensional parameter a,, defines the position of the
pitch axis (elastic axis, shear centre position) of the blade
element.

The relative wind velocity and the angle of attack
give rise to aerodynamic forces on the blade element
described as

F =%-p-V,§,-c~C, (2-8)
F =5pV}eC, 29)
Mm%.p.yrgl.g.cm (@2-10)

where F;, F;, M, are aerodynamic lift force, drag force,
pitching moment and C; , Cy, C,, are the lift, drag and
pitching moment coefficients, which are functions of the
angle of attack, respectively.

As shown in Fig. 2-4 (b), these aerodynamic forces
can be written in the reference frame R-xyz to represent
the thrust and the rotor driving torque, which are the
dominant forces for turbine design.

F, =~Fcos(a+0+¢)— F,sin(a +0+¢) (2-11)

F, = Fsin(a + 8+ @) - F,cos(a+0+4¢) (2-12)

M, =-M, +F,{ca,cos(0+8)}- Fica, sin@+¢)} (2-13)

According to the virtual work principle, the virtual
work done by the aerodynamic forces can be derived as
follows

§W=£[é'wa+5vFv+5¢Mp]dx (2-14)

Figure 2-3. Velocity components in the plane of arbitrary
blade cross-section
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Figure 2-4. Aerodynamic forces acting on the arbitrary
blade cross-section

2.3 Assumed Modes Method

The motion of every substructure may be
approximated by a weighted superposition of admissible
functions [15]. As admissible functions, the mode shapes
obtained from the analytical solutions of the non-rotating
uniform cantilever beam can be used [14].

W = Wi q,0 (2-15)
v = Vi q,m (2-16)
g = ®@T(x) g0 @17

where W, Vand @ are the column vectors consisting
of admissible functions, which describe the flap-wise
bending, lead-lag bending and pitch-wise torsional
motions in the rotating frame, R-xyz, and, ¢., ¢, and go
are the column vectors consisting of the corresponding
time-dependent generalized coordinates.

2.4 Equations of Motion

Linearization of the virtual work using Taylor series
expansion and applying the assumed modes method that
coalesces with the Lagrange’s equation yield a set of
linear differential equations for the blade and these
equations of motion can be expressed as the following
matrix form.

Mx +Cx+Kx=U, +F, (2-18)
where F is the coordinate independent generalized force
vector which results from the aerodynamic forces. The
other coordinate independent vector, Uy arises from the
mass eccentricity and gravitational effect of the rotating
blade. The expressions of the element matrices are given
in Appendix.

The equations of motion (2-18) show that the flap-
wise and lead-lag vibrations are elastically coupled each
other due to the angle 8, which includes the pre-twist and
the pitch angle of the blade, and the bending and
torsional vibrations are dynamically coupled due to the

presence of mass eccentricity, (e,, e7). In addition, it also
shows that the aerodynamic forces are coupled with the
generalized coordinates and contribute to the damping
and stiffness matrices which could cause aeroelastic
instability [4].

The relatively simple structure of the equations of
motion makes them suitable for modeling and vibration
analysis including the coupling effect of wind turbine
blades, as well as turbo-machinery blades, aircraft
propellers or helicopter rotor blades which may be
considered as straight non-uniform beams with built-in
pre-twist.

3. NUMERICAL EXAMPLE

In order to validate the present formulation,
demonstrate the effectiveness of the presented method
and examine the wind turbine blade loadings during
operation, the forced vibration analysis is performed on a
typical pre-twisted wind turbine blade with a non-
uniform cross section and the cantilever boundary
conditions at the root.

To describe deflections of the blade, a total of 24
admissible functions (8 admissible functions for each of
the deflection variables: w, v, @) were used and mode
shapes of the non-rotating uniform beam with clamped-
free boundary condition were used as the admissible
functions.

3.1 Test Blade Configurations

The blade of virtual SMW variable-speed, pitch-
regulated wind turbine designed by National Renewable
Energy Laboratory (NREL) [16] is used for numerical
simulation. This turbine has a 126-m-diameter rotor with
three 61.5-m-long pre-twisted blades and the rated rotor
speed is 12.1 rpm. Figure 2-5 describes the test blade
with the positions of the elastic centre and the centre of
gravity. It shows that since the centre of gravity lies aft
of the elastic axis, the bending and torsion coupled
motion would be expected.
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Figure 3-1 Configuration of the NREL SMW wind turbine
blade: =<===, mass centre; —, pitch axis
(elastic centre); = + ==, aerodynamic centre
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3.2 Forced Vibration Analysis

To demonstrate the dynamic response of the test
blade, standard wind profiles as defined in the
IEC61400-1 [17] are applied to the blade model on the
rated wind condition and the blade tip displacements and
blade root moments are examined. During the entire
simulation, the mean wind speed at hub and the rotor
speed are taken as 11.2 m/s and 12.1 r.p.m., respectively.

3.2.1 Response to Steady Mean Wind

If a steady, uniform flow entering the area swept by
the rotor is assumed, the rotor blades of a horizontal-axis
rotor are subjected to steady-state aerodynamic forces as
shown Fig. 3-2. The lead-lag bending moment on the
rotor blades are the result of the tangential force
distribution, whereas the thrust distribution is responsible
for the flap-wise blade bending moments.

3.2.2 Response to Steady Wind Shear

The wind speed gradient with elevation is known as
wind shear and it is often modeled by a simple power
law [19] as

Vis = Vi (Z ! 2y )E (3-1

where V), means the wind speed at hub elevation. Z and
Zus are the elevation above ground level and the
elevation of the rotor hub, respectively. E is the empirical
wind shear exponent and it is specified by international
standard, IEC 61400-1 [17] as a conservative value of
0.2.

The steady wind shear produces a cyclic variation in
the wind speed to a rotating blade element. The variation
of blade tip displacements and blade root bending
moments with azimuth due to wind shear is illustrated in
Fig. 3-3. The flap-wise displacement and bending
moment are almost a sinusoidal function of azimuth
varying with wind speed.

3.2.3 Response to Tower Shadow

Blocking the air flow by the tower results in region of
reduced wind speed both up-wind and down-wind side of
the tower. The up-wind velocity deficits of tubular tower
can be modeled using potential flow theory [2] and the
inflow velocity is given by

2 2 2

Vv (,_ MJ (32)
=" +y%)

where D (=5m) is the tower diameter, and y and x are the
lateral coordinates and the distance of rotor plane with
respect to the tower centre. Figure 3-4 shows the blade
tip displacements and the variation of lead-lag and flap-
wise root bending moments with azimuth during
operation. Note that the dip in flap-wise bending moment
is observed and more severe than lead-lag bending

moment.

3.2.4 Response to wind shear and tower shadow with
gravity and centrifugal effect

As shown in Fig.3-5, the lead-lag bending moment is
almost a sinusoidal function of azimuth, being dominated
by the gravity loading due to weight of the blade which
changes direction once per revolution. The mean value
for lead-lag moment is not zero because of the mean
positive aerodynamic torque developed by the blade. A
slight distortion on the lead-lag bending moment line is
observed, because of the variation of aerodynamic torque
due to wind shear with the tower shadow effect, and the
flap-wise blade vibration.

The flap-wise moment is always positive due to the
aerodynamic thrust on the blade. Figure 3-5 shows a
relatively small load at 0° azimuth (bottom dead centre)
than at 180° in the flap-wise bending moment. The load
variation with azimuth results from the wind shear. And a
sharp dip at 0° is also visible and this is due to the tower
shadow effect.
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Figure 3-2. (a) Blade tip displacements and (b) blade root
moments with azimuth due to steady mean wind
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Figure 3-3. (a) Blade tip displacements and (b) blade root
moments with azimuth due to steady wind shear

[l S T I Sl P TR A B abetboety o rany

2180450020 290 -60 30 0 30 &0 &0 120 150 1E0
Azimuth angle

(a)

cs

03 4
—— ‘E()'!,'i

"""" 65¢-'a9

----- slon-.se

a5 . N N
120750120 90 60 -30 0 30 £0 S0 120 150 180
Azimuth angle

)

Figure 3-4. (a) Blade tip displacements and (b} blade root
moments with azimuth due to steady mean wind
and tower shadow effect
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Figure 3-5. (a) Blade tip displacements and (b) blade root
moments with azimuth due to shear and tower
shadow with gravity and centrifugal effect

4. CONCLUSION

A set of ordinary differential equations, governing
the coupled dynamic motion of a flexible wind turbine
blade, and aerodynamic forces, acting on the blade have
been formulated by using assumed mode method. From
this blade aeroelastic model, the forced response and the
root moment of the blade are examined by applying
typical steady wind profiles. The results have shown that
the forced response and the loads of the blade reflect
corresponding wind characteristics well and the present
model successfully captures the fundamental structural
and aerodynamic characteristics of the blade.
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APPENDIX
Element matrices
M= A, C=-[Bax K,=A,
M,= 0 C,=-[Bax K,=A,
My= A, Cy=-[B.ax K,=-[Ba
My= 0 C,=-[Bdx K,=A]
My,= A, C,=-[Bdx K,=A,
My=-A, Cy=-[B,dx Ky=A,-[B,&
M,= Al Cy=-[B,a&x  K,=0
M,=-A]  C,=-[B.,dx K,=A]
My= A, C,=-[B.dx Ky=A,-[B.dr
U=0 U= A, U, =-A,
F, =[Bar F =[Ba F, =[5,

4,= [[ImWW]dx

4, = jo'[mva]dx

!
A= Io[{m(eqz +el)+J,} 00 dx

A4,= J'Ol[m(e,lsinQ +e, cos @)V dx

Ag= [[m(e,cos0 —e, sin@) W ®")dx

Ay = [[LEL, W'W"" + TW'W' Jdx
8 o ¥

4, = j;[- mPVVT +EL V'V +T V'V |dx

A= [[[- 22 {m (e, s5inb+ e cos0) +J,) DT +GJ D dx

Ay, = [[[EL, W'V

4y, = [[[m @ (e, sinb+e,cos0)V @ dx

A, = JOI[{m.Q2 (e,cos0—e_sin8)—mg sing2t}V]dx

A, = J.O[[{m.Q2 (e,sinf+e_cos@)(e, cosO—e,_sinb)...

-.—mg singt (e, sinf+e_cos8)} ®}dx
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B, =~4pcl{Vy(1-a)) + {2(x+ ) (1+a)}]..
.{C,cos +C, siny}

B, =~% pel2(¥,(1-@)}1C, cosii + C, 5imi ...
et pclV(1-a)f +{2(x+ (1 +a)}]...
(e

o ¥ C,)cosy +(C-‘d(a, - C‘,)sinq?]&(w,

B, =1 pc2{(x+h) 201+ a1, cosip + C, sini]...

wm L pel{V,(1-a)Y +{ 2(x+ )1+ a)}]..

e [(Cppay + Cyeosi + (€, - Csing 1 )
B, ==L pc[{V(1-a) +{Q(x+m)(1+a)}]

o [Crpay +Cycosip +(C,,, ~ Csini &
By =1 pel{Vy(1-a)} +{2(x + k)1 +a)}']...

oA Gy 057+ Cy oy siT

B, =tpc{V,(l-a)f +{R2x+m(+a)f]..
w{C, sinp - C, cosyp }

B, =4 pel 2V, (1= )}, siniy = C, cosip}...
et L pe[ {1 =a)f +{Q(x+ B+ a)}]..

‘..'[(él(:z) +C,)sing - (érl(al ~C)cosy )& [

By =1 pe[2(2(x + iy(1+a)} (€, sini - C, cosi ...
et peliV (- @Y +{2(x+ (A +a)y 1.

~[(C",m +C ) sing - (C‘,,m —-C",)cosl/’i]o?(v)
B, =4 pel{Vy(1-a)f +{Q(x+m(1+a)¥]..
""[(él(a) +é")sm‘i—(é‘l(u) ~C,)cos!/7]a' )

B, =1 pcl{V(-a) +{Q2(x+h(1+a)} 1.
...~{C‘d(a)cos(/7—é,(a) siny/ }

B, =~ipc[{K(-a)} +{Q(x+m)(1+a)}]C,..
..+ B,ca, cos6~ B, ca, sinf

B,=~%pct[2(¥(1-a)}IC, -4 p UV (1-a)} ...
ot { 2(x+ (1 +a))1C,

..— B, ca, sind

(0 &y + Byca, cosb...

B, =—+ pd [ 2x+M(1+aN]C, -1 pl{F,A-a)}...

{2+ +a)y]-C

mia)

a't(,,,+1§30aac cos@...
.~ Byca, sinf

By == pSl{l(-a)f +{ LG+ W1 +a)}1Co @
..+ B,ca, cos0-B,ca, sind

By=4 pc (- @)Y +{2G+m(+a)}]-C oy
..+ca, {(B,—B,)cos6 —(B,, + B,)sinb}

G = tan (___l’gﬂ:_”)_J_g
QGx+h(+a)

. Q(x+h)(+a)

Ziwy = 2 iz
{(V(i-a)} +{2(x+h)(1+a")}

. “Wi-a)

Qyy = 3 3
{(Vy(-a)} +{R(x+h)(1+a")}

d ‘c(%—am){%(l-a)sin9+.Q(x+h)(1+a')cos6‘}

w = {(V(l-a) Y +{Q(x+h(1+a)}

&y = -1

v =a+é

Vi = G

Ve = &

Vi = &y

Vi =0
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