• Title/Summary/Keyword: Straight way

Search Result 162, Processing Time 0.03 seconds

Magnetic Field Analysis of the Field Coil for 10 MW Class Superconducting Wind Turbines (10 MW급 초전도 풍력발전기 계자코일 전자장 해석)

  • Kim, Ji-Hyung;Park, Sa-Il;Kim, Ho-Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.18-22
    • /
    • 2012
  • This paper presents the magnetic field analysis of the racetrack double pancake field coil for the 10 MW class superconducting wind turbine which is considered to be the next generation of wind turbines using the 3 Dimensional FEM(Finite Elements Method). Generally, the racetrack-shaped field coil which is wound by the second generation(2G) superconducting wire in the longer axial direction is used, because the racetrack-shaped field coil generates the higher magnetic field density at the minimum size and reduces the synchronous reactance. To analysis the performance of the wind turbines, It is important to calculate the distribution of magnetic flux density at the straight parts and both end sections of the racetrack-shaped high temperature superconductivity(HTS) field coil. In addition, Lorentz force acting on the superconducting wire is calculated by the analysis of the magnetic field and it is important that through this way Lorentz force can be used as a parameter in the mechanical analysis which analyzes the mechanical stress on the racetrack-shaped field coil.

A Study on Accuracy of Environmental Reporting in Korean Major Dailies (국내 중앙 일간지 환경보도의 정확성에 관한 연구)

  • Ahn Jong-ju
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.31-39
    • /
    • 2002
  • Generally, inaccurate reports on environmental issues occur due to various factors. The purpose of this study was to find out a way to enhance accuracy of environmental reporting. So the reporters' career and college major had been compared to the accuracy of their articles. The by-lined environmental articles in nine dailies published in 1991 were checked. Results of this study were as follows. (I) Inaccuracy rate in environmental articles was 54.2%. Inaccuracies appeared 1.7 times per an article, while the average frequency of inaccuracies in overall articles was 0.9 time. (2) Errors in the articles consist of 65.8% of subjective inaccuracies and 34.2% of subjective inaccuracies. They derive from the false usage of terminology(15.8% ),misquotation(14.5%), incorrect statistics(13%), exaggeration(13%), inaccurate title(7.9%), and false comparison(5%). (3) Inaccuracy rate by the type of articles was 66.7% in columns, 60% in feature stories, 54.5% in-depth stories, 40.9% in straight news, respectively. (4) Inaccuracy rate by the specific field was shown 71.4% in environmental impacts assessment, 52.5% in water pollution, 37.5% in waste management, and 35.7% in air pollution. (5) According to the result of chi-square test analysis, there were no statistically significant differences of inaccuracy rate and of subjective, and objective inaccuracies relevant to the period of reporters' career covering environmental reporting and the nature of articles, and college major.

Solution method for the classical beam theory using differential quadrature

  • Rajasekaran, S.;Gimena, L.;Gonzaga, P.;Gimena, F.N.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.675-696
    • /
    • 2009
  • In this paper, a unified solution method is presented for the classical beam theory. In Strength of Materials approach, the geometry, material properties and load system are known and related with the unknowns of forces, moments, slopes and deformations by applying a classical differential analysis in addition to equilibrium, constitutive, and kinematic laws. All these relations are expressed in a unified formulation for the classical beam theory. In the special case of simple beams, a system of four linear ordinary differential equations of first order represents the general mechanical behaviour of a straight beam. These equations are solved using the numerical differential quadrature method (DQM). The application of DQM has the advantages of mathematical consistency and conceptual simplicity. The numerical procedure is simple and gives clear understanding. This systematic way of obtaining influence line, bending moment, shear force diagrams and deformed shape for the beams with geometric and load discontinuities has been discussed in this paper. Buckling loads and natural frequencies of any beam prismatic or non-prismatic with any type of support conditions can be evaluated with ease.

Comparison of the Difference between Body Perception and Satisfaction by Consumers' Pants and Skirt Preference and Wearing Style (선호스타일과 착용스타일별 신체 인지도와 만족도 차이 비교 (제2보) - 팬츠와 스커트를 중심으로 -)

  • 박숙현;권미정;이경림
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.4
    • /
    • pp.511-528
    • /
    • 2004
  • The purpose of this study was to find out comparison of preference style and wearing style of pants and skirt by body perception and satisfaction. This research was done by a survey method. Descriptive Statistics, Coefficients MANOVA, Two-Way ANOVA, t-test and Duncan's test were used for data analysis. The results of this study are as follows. 1) The subjects with the highest dissatisfaction about waist girth prefer high waist pants. The subjects with longer waist wear high waist pants. The subjects with wider hips wear narrow down pants. The subjects with the thickest thighs prefer narrow pants but wear narrow down pants. The subjects with the highest dissatisfaction about calf thickness prefer narrow pants but wear wide pants. The subjects with the highest satisfaction about leg length prefer and wear calf length pants. The subjects with the thinnest calves prefer and wear tight pants. 2) The subjects with the thickest thighs prefer straight skirt but wear narrow down skirt. The subjects with the highest dissatisfaction about thigh thickness wear A-line skirt.

  • PDF

A Study on Quantifying Sailing Safety Considering Maneuverability of a Vessel (선박의 조종특성을 고려한 운항안전성능의 수치화 방법에 관한 연구)

  • You, Youngjun;Kim, Sewon;Kim, Woojin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.113-124
    • /
    • 2017
  • Recently, ship owners are requiring an assessment of sailing safety of a ship from an analysis considering maneuverability and environmental loads etc. In this paper, we propose a new approach to assess sailing safety by considering the prescribed parameters. The concept of sailing safety is developed from DP capability analysis and is based on the maneuvering simulations. While the ship is continuously disturbed due to irregular environmental loads during the simulations, it is steered to keep its course along the way points assumed along a straight path. After relative distances between four edges of the ship and allowable safety boundaries are calculated for 3 hours, the minimum values are obtained. The minimum distances are marked on a polar chart and we call this a quantified safe operation judgment chart which indicates quantified sailing safety.

Driving Burj Dubai Core Walls with an Advanced Data Fusion System.

  • Cranenbroeck, Joel Van;Hayes, Douglas McL;Sparks, Ian R
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.465-469
    • /
    • 2006
  • In recent years there has been considerable interest in the construction of super high-rise buildings. From the prior art, various procedures and devices for surveys during and after the phase of erection of a high-rise building are known. High-rise buildings are subject to strong external tilt effects caused, for instance, by wind pressures, unilateral thermal effects by exposure to sunlight, and unilateral loads. Such effects are a particular challenge in the phase of construction of a high-rise building, in as much as the high-rise building under construction is also subject to tilt effects, and will at least temporarily lose its - as a rule exactly vertical - alignment. Yet construction should progress in such a way that the building is aligned as planned, and particularly so in the vertical, when returning into an un-tilted basic state.It is essential that a straight element be constructed that theoretically, even when moving around its design centre point due to varying loads, would have an exactly vertical alignment when all biasing conditions are neutralised. Because of differential raft settlement, differential concrete shortening, and construction tolerances, this ideal situation will rarely be achieved. This paper describes a procedure developed by the authors using GPS observations combined with a network of precision inclination sensor to provide reliable coordinated points at the top of the worldwide highest-rise building under construction in Dubai.

  • PDF

A Study on Pattern Analysis of Odorous Substances with a Single Gas Sensor

  • Kim, Han-Soo;Choi, Il-Hwan;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.423-430
    • /
    • 2016
  • This study used a single metal oxide semiconductor (MOS) sensor to classify the major odorous gases hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and toluene ($C_6H_5CH_3$). In order to classify these odorous substances, the voltage on the MOS sensor heater was gradually reduced in 0.5 V steps 5.0 V to examine the changes to the response by the cooling effect on the sensor as the voltage decreased. The hydrogen sulfide gas showed the highest sensitivity compared to odorless air under approximately 2.5 V and the ammonia and toluene gases showed the highest sensitivity under approximately 5.0 V. In other words, the hydrogen sulfide gas reacted better in the low temperature range of the MOS sensor, and the ammonia and toluene gases reacted better in the high-temperature range. In order to analyze the response characteristics of the MOS sensor by temperature in a pattern, a two-dimensional (2D) x-y pattern analysis was introduced to clearly classify the hydrogen sulfide, ammonia, and toluene gases. The hydrogen sulfide gas was identified by a straight line with a slope of 1.73, whereas the ammonia gas had a slope of 0.05 and the toluene gas had a slope of 0.52. Therefore, the 2D x-y pattern analysis is suggested as a new way to classify these odorous substances.

Kinematic Analysis of the Putter Head and Body Alignments during Short and Long Putts (숏 퍼팅과 롱 퍼팅 시 퍼터헤드와 신체 정열의 운동학적 분석)

  • Park, Tae-Jin;Youm, Chang-Hong;Park, Young-Hoon;Sun, Sheng;Seo, Kuk-Woong;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.51-60
    • /
    • 2007
  • The purpose of this study was to kinematically analyze the differences between short(2.17 m) and long(10.94 m) putting stroke motions. Thirteen male professional golfers were participated in this study. Experiment was conducted on the artificial grass mat in the gymnasium. Kinematic data were collected by the 60 Hz Kwon3D motion analysis system. Differences were compared by SPSS paired t-test and one-way ANOVA. Duncan was used for post-hoc test and a=.05. The results were as follows: 1. Ground projected trajectory of the putter head were statistically straight during both short and long putts. 2. There was no consistent alignment tendency among shoulder, hip, and stance alignments. However stance alignment was consistent between short and long putts. Thus it is assumed that professional golfers align their body based on their stance alignment. 3. During putting, shoulder rotated not only up and down but also right and left. 4. Left and right elbow distance was maintained during all phases of the putts for both short and long putts. 5. Inter foot distance of long putting was longer than that of short putting.

Mechanical analysis of the bow deformation of a row of fuel assemblies in a PWR core

  • Wanninger, Andreas;Seidl, Marcus;Macian-Juan, Rafael
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.297-305
    • /
    • 2018
  • Fuel assembly (FA) bow in pressurized water reactor (PWR) cores is considered to be a complex process with a large number of influencing mechanisms and several unknowns. Uncertainty and sensitivity analyses are a common way to assess the predictability of such complex phenomena. To perform such analyses, a structural model of a row of 15 FAs in the reactor core is implemented with the finite-element code ANSYS Mechanical APDL. The distribution of lateral hydraulic forces within the core row is estimated based on a two-dimensional Computational Fluid Dynamics model with porous media, assuming symmetric or asymmetric core inlet and outlet flow profiles. The influence of the creep rate on the bow amplitude is tested based on different creep models for guide tubes and fuel rods. Different FA initial states are considered: fresh FAs or FAs with higher burnup, which may be initially straight or exhibit an initial bow from previous cycles. The simulation results over one reactor cycle demonstrate that changes in the creep rate and the hydraulic conditions may have a considerable impact on the bow amplitudes and the bow patterns. A good knowledge of the specific creep behavior and the hydraulic conditions is therefore crucial for making reliable predictions.

Theoretical Shape Analysis of Continuous Contact Helical Gear for Low Noise Pump (저소음 기어펌프용 연속접촉 헬리컬기어의 형상 설계에 관한 연구)

  • Kim, Kaptae;Shin, Soosik;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.58-66
    • /
    • 2018
  • The use of external gear pumps is an effective way to achieve adequate performance at low cost when composing hydraulic systems. The biggest drawback, on the other hand, is the accompanying noise. Gears of continuous contact shape are actively used for the pump recently. The continuous contact shape must be the helical type due to the nature of the gear pump that is driven only by the drive gear. In this paper the theoretical shape of continuous contact gear is analyzed using simple rack shape of straight lines and two circular arcs. Using such geometry, the theoretical equation will be developed by envelope curves according to the conjugate gear shape rules. After checking the validity of the theory by the shape of gear rules, the grinding shape was also developed. The 3D shapes using equation can be also drawn. It was also shown that contact ratio and radius of curvature are easily developed by the theoretical equations.