• Title/Summary/Keyword: Straight Line Treatment

Search Result 51, Processing Time 0.022 seconds

Shallow ground treatment by a combined air booster and straight-line vacuum preloading method: A case study

  • Feng, Shuangxi;Lei, Huayang;Ding, Xiaodong;Zheng, Gang;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.129-141
    • /
    • 2021
  • The vacuum preloading method has been used in many countries for soil improvement and land reclamation. However, the treatment time is long and the improvement effect is poor for the straight-line vacuum preloading method. To alleviate such problems, a novel combined air booster and straight-line vacuum preloading method for shallow ground treatment is proposed in this study. Two types of traditional vacuum preloading and combined air booster and straight-line vacuum preloading tests were conducted and monitored in the field. In both tests, the depth of prefabricated vertical drains (PVDs) is 4.5m, the distance between PVDs is 0.8m, and the vacuum preloading time is 60 days. The prominent difference between the two methods is when the preloading time is 45 days, the injection pressure of 250 kPa is adopted for combined air booster and straight-line vacuum preloading test to inject air into the ground. Based on the monitoring data, this paper systematically studied the mechanical parameters, hydraulic conductivity, pore water pressure, settlement and subsoil bearing capacity, as determined by the vane shear strength, to demonstrate that the air-pressurizing system can improve the consolidation. The consolidation time decreased by 15 days, the pore water pressure decreased to 60.49%, and the settlement and vane shear strengths increased by 45.31% and 6.29%, respectively, at the surface. These results demonstrate the validity of the combined air booster and straight-line vacuum preloading method. Compared with the traditional vacuum preloading, the combined air booster and straight-line vacuum preloading method has better reinforcement effect. In addition, an estimation method for evaluating the average degree of consolidation and an empirical formula for evaluating the subsoil bearing capacity are proposed to assist in engineering decision making.

Field instrumentation and settlement prediction of ground treated with straight-line vacuum preloading

  • Lei, Huayang;Feng, Shuangxi;Wang, Lei;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • The vacuum preloading method has been used in many countries for ground improvement and land reclamation works. A sand cushion is required as a horizontal drainage channel for conventional vacuum preloading. In terms of the dredged-fill foundation soil, the treatment effect of the conventional vacuum preloading method is poor, particularly in Tianjin, China, where a shortage of sand exists. To solve this problem, straight-line vacuum preloading without sand is widely adopted in engineering practice to improve the foundation soil. Based on the engineering properties of dredged fill in Lingang City, Tianjin, this paper presents field instrumentation in five sections and analyzes the effect of a prefabricated vertical drain (PVD) layout and a vacuum pumping method on the soft soil ground treatment. Through the arrangement of pore water pressure gauges, settlement marks and vane shear tests, the settlement, pore water pressure and subsoil bearing capacity are analyzed to evaluate the effect of the ground treatment. This study demonstrates that straight-line vacuum preloading without sand can be suitable for areas with a high water content. Furthermore, the consolidation settlement and consolidation degree system is developed based on the grey model to predict the consolidation settlement and consolidation degree under vacuum preloading; the validity of the system is also verified.

THE CANAL SYSTEM OF MANDIBULAR INCISORS (하악 절치의 근관계에 관한 연구)

  • Rhim, Eun-Mi;Choi, Ho-Young;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.4
    • /
    • pp.432-440
    • /
    • 2002
  • The purpose of this study is to identificate root canal system including ideal access placement, root curvature, canal configuration, incidence of isthmus in mandibular incisors for success of endodontic treatment. 200 mandibular incisors were selected. The ideal access placement was determimed as follows. The teeth there radiographed from mesiodistal and buccolingual views using intraoral dental film. The image was divided into coronal, middle and apical third using the proximal film. Straight line access was determined by measuring the faciolingual canal width and placing points at midway point between the buccal and lingual wall at the junction of the middle and apical third and at the juntion of coronal and middle third of the root canal. A line was drawn connecting these two points extending through the crown of the tooth. The point at which the line crossed the external crown surface was recorded as facial, incisal, lingual. Degree of root curvature was determined by Schneider Protractor Method. Both section method and clearing method were used in this study. By section method, 100 mandibular incisors were embedded in clear resin and transeverse serial sectioned at 0.5, 1.0, 2.0, 3.0, 4.0, 5.0mm level from root apex. The resected surfaces were stained by methylene blue and examined under $\times$40 magnification with a stereomicroscope. By clearing method, 100 mandibular incisors were cleared in methysalicylate after decalcification with 10% nitric acid and evaluated under $\times$18 magnification with a stereomicroscope. The results were as follows ; 1. 29% had the center of the plotted straight-line access facial to incisal edge, whereas 71% had straight-line access at the incisal edge. When incisal wear classified as extensive, the straight-line access was plotted on the incisal edge 95.5%. When incisal wear classified as slight/none, the straight-line access was plotted on the facial 65.9%. 2. Degree of curvature of main canal was straight or almost straight, and only 10% in buccolingual direction had a degree of curvature greater than 20 degrees and 5.5% in mesiodistal direction had. 3. In section method, canal configuration analysis showed that 51% of the specimen classified as type I, 27% as type II, 12% as type III, 10% as type IV. For theses setions with two canals, the incidence of an isthmus was 36.7%, 64.3%, 79.2%, 96.3%, 97.4%, 97.6% at each level and highest in 3~5mm sections. 4. In clearing method, canal configuration analysis showed that 74% of the specimen classified as type I, 11% as type II, 6% as type III, 9% as type IV. These results suggested that traditional access from lingual should be moved as far toward the incisal as possible to locate and debride the lingual canal and root canal system should be cleaned, shaped completely and obturated three dimensionally for successful endodontic treatment.

Soft tissue reconstruction in wide Tessier number 3 cleft using the straight-line advanced release technique

  • Kim, Gyeong Hoe;Baek, Rong Min;Kim, Baek Kyu
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.4
    • /
    • pp.255-259
    • /
    • 2019
  • Craniofacial cleft is a rare disease, and has multiple variations with a wide spectrum of severity. Among several classification systems of craniofacial clefts, the Tessier classification is the most widely used because of its simplicity and treatment-oriented approach. We report the case of a Tessier number 3 cleft with wide soft tissue and skeletal defect that resulted in direct communication among the orbital, maxillary sinus, nasal, and oral cavities. We performed soft tissue reconstruction using the straight-line advanced release technique that was devised for unilateral cleft lip repair. The extension of the lateral mucosal and medial mucosal flaps, the turn over flap from the outward turning lower eyelid, and wide dissection around the orbicularis oris muscle enabled successful soft tissue reconstruction without complications. Through this case, we have proved that the straight-line advanced release technique can be applied to severe craniofacial cleft repair as well as unilateral cleft lip repair.

Reconstruction of a Traumatic Cleft Earlobe Using a Combination of the Inverted V-Shaped Excision Technique and Vertical Mattress Suture Method

  • Park, June Kyu;Kim, Kyung Sik;Kim, Seung Hong;Choi, Jun;Yang, Jeong Yeol
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.4
    • /
    • pp.277-281
    • /
    • 2017
  • Traumatic cleft earlobes are a common problem encountered by plastic and reconstructive surgeons. Various techniques have been reported for the repair of traumatic cleft earlobes. Usually, the techniques of split earlobe repair are divided into two categories, namely straight- and broken-line repairs. Straight-line repair is simple and easy, but scar contracture frequently results in notching of the inferior border of the lobule. It can be avoided by the broken-line repair such as Z-plasty, L-plasty, or a V-shaped flap. Between April 2016 and February 2017, six patients who presented with traumatic cleft earlobe underwent surgical correction using a combination of the inverted V-shaped excision technique and vertical mattress suture method. All the patients were female and had a unilateral complete cleft earlobe. No postoperative notching of the inferior border the lobule occurred during 6-16 months of follow-up. Without the use of a broken-line repair, both the patients and the operators attained aesthetically satisfactory results. Therefore, the combination of the inverted V-shaped excision technique and vertical mattress suture method is considered useful in the treatment of traumatic cleft earlobes.

Study on the Dislocation Structure and Work Hardening of Single-crystal L12-Ni3Al Intermetallic Compounds Prepared by Bridgman Method

  • Chang-Suk Han;Chang-Hwan Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.215-220
    • /
    • 2024
  • Slip lines and dislocation structures developed by deformation at 77 K, 292 K and 500 K have been investigated by an optical microscope and a high-voltage electron microscope. Slip patterns after the deformation by 4-5% at 77 K and 500 K are compared. From the slip line geometry, operation of both primary and secondary {111} slips have been confirmed. However, the primary slip lines formed at 77 K appear coarser and more pronounced than those at 500 K. This indicates that a larger number of dislocations have moved on the same plane at 77 K. Another characteristic difference noted here is that the slip lines are straight and pass through the specimen from one end to the other at 77 K. On the contrary, slip lines are rather faint at 500 K. The typical change found at 77 K is the increase in the [$0{\bar{1}}1$] dipole dislocations and generation of the [$10{\bar{1}}$] screw dipoles upon increase in the strain from 1.2% to 5.2%. This is the indication that the straight dipole dislocations were formed by a pinning effect due to jogs generated by mutual cutting between primary and secondary dislocations. Extremely fine slip has been noted after deformation at 500 K indicating that the usual Frank-Read source is not operative at high temperatures due to the strong KW locking.

Prediction of Residual Stress in Straightening Process of SUS304 Wire (SUS304 와이어 직선화처리 공정 중 잔류응력 예측)

  • Kim, T.W.;Ham, S.H.;Moon, H.I.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.250-253
    • /
    • 2007
  • It is known that fine straightness of micro-wire can be obtained by removing residual stress induced during the manufacturing processes. Generally, residual stress is removed or minimized through several drawing processes with heat treatment. In this study, the residual stress at each straightening process is calculated and monitored by finite element analyses and the main reason of stress change is investigated.

  • PDF

Automatic Individual Tooth Region Separation using Accurate Tooth Curve Detection for Orthodontic Treatment Planning

  • Lee, Chan-woo;Chae, Ok-sam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • In this paper, we propose the automatic detection method for individual region separation using panorama image. Finding areas that contain individual teeth is one of the most important tasks in automating 3D models through individual tooth separation. In the conventional method, the maxillary and mandibular teeth regions are separated using a straight line or a specific CT slide, and the tooth regions are separated using a straight line in the vertical direction. In the conventional method, since the teeth are arranged in a curved shape, there is a problem that each tooth region is incorrectly detected in order to generate an accurate tooth region. This is a major obstacle to automating the creation of individual tooth models. In this study, we propose a method to find the correct tooth curve by using the jawbone curve which is very similar to the tooth curve in order to overcome the problem of finding the area containing the existing tooth. We have proposed a new method to accurately set individual tooth regions using the feature that individual teeth are arranged in a direction similar to the normal direction of the tooth alignment curve. In the proposed method, the maxillary and mandibular teeth can be more precisely separated than the conventional method, and the area including the individual teeth can be accurately set. Experiments using real dental CT images demonstrate the superiority of the proposed method.

Prediction of Residual Stress in Straightening Process of SUS304 Wire (SUS304 와이어 직선화처리 공정 중 잔류응력 예측)

  • Kim, T.W.;Ham, S.H.;Moon, H.I.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.463-466
    • /
    • 2007
  • Micro-wire made from straightening process invents high added value and it has been adopted many industrial fields. Therefore, many research activities about straightening process are advanced actively. It is known that fine straightness of micro-wire can be obtained by removing residual stress induced during the manufacturing processes. Generally, residual stress is removed or minimized through several drawing processes with heat treatment. In this study, the residual stress at each straightening process is calculated and monitored by finite element analyses and the main reason of stress change is investigated.

A Study on the Machining Characteristics of Prototype of Roller Gear Cams (롤러 기어 캠의 시제품 가공특성에 관한 연구)

  • Kim, Jin-Su;Kang, Seong-Ki;Lee, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-67
    • /
    • 2012
  • In the study, the effect grinding condition on the workpiece arithmetical average roughness(Ra) to 10 steps leading to cutting each section with the spindle rotational speed 8000rpm and feed rate 150mm/min of grinding in GC(green silicon carbide) grinding processing after heat treatment and non heat treatment of SCM415 material. Also the following conclusions were obtained analysis of stress distribution displacement and finite elements method(FEM) on assemble parts with 3+2 axis simultaneous control through grinding and gave a load 11kg on ATC arm both sides gave a load of 11kg. For the centerline average roughness(Ra) in the heat and non-heat treatment work pieces, which were appeared the most favorable in the fifth section were $0.511{\mu}m$ and $0.514{\mu}m$, that were shown in the near the straight line section was the smallest deformation of curve. In addition, the bad surface roughness appeared on the path is too long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.