• Title/Summary/Keyword: Storm surges

Search Result 72, Processing Time 0.027 seconds

CALCULATION OF THE HEIGHTS OF STORM SURGES OF THE COAST SEA AREA OF JEJU ISLAND (제주도 연안해역의 폭풍해일고 산정)

  • Lee, Seung-Ho;Yang, Sung-Kee;Kim, Sang-Bong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1032-1035
    • /
    • 2008
  • 제주도 연악해역의 해일재해의 현황을 파악하기 위하여 제주도 연안해역의 폭풍해일과 기상조에 등에 의한 해일발생 및 피해의 자료를 분석 검토하고 제주도 연안해일의 위험도를 분석하기 위하여 제주도 연안해역을 대상으로 과거 태풍 중 각종 기록경신과 많은 피해규모를 준 태풍들을 대상으로 바람장 및 해일고를 분석 검토하여 태풍의 진로에 따른 해수면 상승을 산정하기위해 폭풍해일 수치모형(POM) 실험을 실시하여 폭풍해일고를 산정하였다. 제주항과 서귀포항 주변해역의 폭풍해일고를 산출하기 위해 16년간($1987{\sim}2003$)까지의 우리나라에 영향을 미친 태풍 중 8개를 선정(Maemi, Rusa, Prapiroon, Olga, Yanni, Janis, Gladys, Thelma)하여 폭풍해일고를 산출하였다. 수치모의 한 결과를 보면, 제주와 서귀포 연안해역에서 발생한 8개의 태풍에 대한 폭풍해일고의 발생시각은 대체적으로 관측된 해일고의 발생시각 보다 약간 늦게 해일이 발생하였지만 전체적인 해일의 시간변화나 크기는 비교적 잘 재현된 것으로 나타났다. 제주항 연안해역의 서귀포항 연안해역보다 높은 해일고를 보였으며, 해일고는 제주항, 서귀포항 모두 1m를 넘지 않았다. 제주항이 서귀포항에 비해 약간 높게 나온 이유는 태풍의 위치, 지형 및 수심, 태풍이 통과할 당시의 조석상황 등의 차이인 것으로 사료된다. 또한, 제주항과 서귀포항 연안해역이 폭풍해일고가 서해안이나 남해안에 비해 작게 나타났는데, 이는 제주도 해안선이 비교적 평탄하고 평행하게 이루어 졌으며 남해안에 비해 수심이 깊고 만의 형태나 V자형 및 긴내만이 발달한 지형이 없기 때문인 것으로 사료된다. 보다 정밀한 예측을 위해서는 정밀한 수심자료 및 격자를 이용한 계산의 결과가 필요하며, 연안개발로 인한 지형과 수심변화에 따른 지속적인 수치해도 DB구축이 요구된다.

  • PDF

Oceanographic Tasks and International Coorperations for the Utilization and Disaster Prevention of the Yellow Sea (황해의 리용과 재난방지를 위한 해양학적 과제와 국제협력)

  • OHIMSANG
    • 한국해양학회지
    • /
    • v.28 no.4
    • /
    • pp.339-346
    • /
    • 1993
  • Due to the natural increase of human population and the concentration of industrial complexes to coastal area, the uses of nearshore area were increased drastically, and the tendency will not stop for a while. Therefore, the loss of human life and property damages of the present days for a disaster of the same magnitude should be heavy as compared to those of the past. For the better utilization of the sea and the prevention of the frequent marine natural and man-made disaster, and for the preparedness for the ocean pollutions, through ocean researches are required. the circulation, tidal currents, storm surges, sea surface wind, waves and sea fogs of the Yellow Sea should be investigated first from the oceanographic point of view, and then the dispersion and diffusion of spilled oil and pollutants, beach erosion, red tide, and longterm sea level oscillations can be studied. International cooperation is crucial for the investigation of the sea because of the temporal and geographic scales of the oceanic phenomina.

  • PDF

Assessment of the Impact of Climate Change on Marine Ecosystem in the South Sea of Korea (기후변화가 남해 해양생태계에 미치는 영향평가)

  • Ju, Se-Jong;Kim, Se-Joo
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.197-199
    • /
    • 2012
  • According to the IPCC climate change scenario (A1B scenario), the surface seawater temperature of the South Sea of Korea by 2100 may be $2-3.5^{\circ}C$ higher than at present, and seawater pH may decrease from 8.1 to 7.8, due to the increase in atmospheric $CO_2$, which is predicted to increase in concentration from 380 to 750 ppm. These changes may not only intensify the strength of typhoons/storm surges but also affect the function and structure the marine ecosystem. In order to assess the impact of climate change on the marine ecosystem in Korean waters, the project named the 'Assessment of the impact of climate change on marine ecosystem in the South Sea of Korea' has been supported by the Ministry of Land, Transport and Maritime Affairs, from 2008. The goal of this project is to enhance our ability to adapt and prepare for the future environmental changes through the reliable predictions based on the knowledge obtained from projects like this. In this respect, this project is being conducted to investigate the effects of climate/marine environment changes (ocean warming and acidification), and to predict future changes of the structure and function of the ecosystem in the South Sea of Korea. This special issue contains 6 research articles, which are the highlights of the studies carried out through this project.

Local Fine Grid Sea Wind Prediction for Maritime Traffic (해상교통을 위한 국지정밀 해상풍 예측)

  • Park, Kwang-Soon;Jun, Ki-Cheon;Kwon, Jae-Il;Heo, Ki-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.449-451
    • /
    • 2009
  • Sea level rise and increase of the typhoon/hurricane intensity due to global warming have threaten coastal areas for residential and industrial and have been widely studied. In this study we showed our recent efforts on sea wind which is one of critical factors for safe maritime traffic and prediction for storm surges and waves. Currently, most of numerical weather models in korea do not have sufficient spatial and temporal resolutions, therefore we set up a find grid(about 9km) sea wind prediction system that predicts every 12 hours for three day using Weather Research and Forecasting(WRF). This system covers adjacent seas around korean peninsula Comparisons of two observed data, Ieodo Ocean Research station(IORS) and Yellow Sea Buoy(YSB), showed reasonable agreements and by data assimilation we will improve better accurate sea winds in near future.

  • PDF

Optmized Design for Flood Mitigation at Sea Side Urban Basin (해안 도시유역의 수재해 저감설계 최적화 기법 연구)

  • Kim, Won Bum;Kim, Min Hyung;Son, kwang Ik;Jung, Woo Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.267-267
    • /
    • 2016
  • Extreme events, such as Winnie(1987), Rusa(2002), Maemi(2003) at sea-side urban area, resulted not only economic losses but also life losses. The Korean sea-side characterisitcs are so complicated thar the prediction of sea level rise makes difficult. Geomophologically, Korean pennisula sits on the rim of the Pacific mantle so the sea level is sensitive to the surges due to earth quake, typoon and abnormal climate changes. These environmetns require closer investigation for the preparing the inundatioin due to the sea level rise with customized prediction for local basin. The goal of this research is provide the information of inundation risk so the sea side urban basin could be more safe from the natural water disastesr.

  • PDF

Morphological and Textural Characteristics of the Beach-dune System in South Korea, with the Possibility of a Dune Type Scheme Based on Grain-size Trend (국내 해안의 해빈-해안사구 지형 및 퇴적물 특성과 입도기반 사구유형 분석)

  • Rhew, Hosahng;Kang, Jihyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.53-73
    • /
    • 2020
  • Morphology and grain size distribution of coastal dunes should be well documented because they are critical to dune's buffering capacity and resilience against storm surges. The nationwide coastal dune survey produced the dataset, including beach-dune topographic profiles and grain size parameters for frontal beaches, foredunes, and inland dunes. This research investigated the dataset to describe geomorphic and textural properties of coastal dunes: foredune slopes, dune heights above approximately highest high water, mean size, and sorting, together with associated variables of coastal setting that influence coastal dunes. It also explores the possibility of a dune type scheme based on gran size trends. The results are as follows. First, the coast in which dunes are developed is the primary control on foredune morphology and sediment texture. Coastal dunes on the east coast were developed more alongshore rather than inland, with gentler slopes on the higher ground and out of coarser sand. The shore aspect contributes to this pattern because the east coast cannot benefit from prevailing northwesterly. Second, grain size trends from beaches through foredunes to inland dunes were little identified. Third, 12 dune types were identified from 69 dunes, showing the indicative capability for the status of beaches and dunes. We confirmed that the dataset could increase our understanding of the overall characteristics of coastal dune morphology and texture, though there is something to be improved, for example, establishing the refined and comprehensive field survey protocol.

Objective Estimation of the Maximum Wind Position in Typhoon using the Cloud Top Temperature Analysis of the Satellite TBB Data (위성 TBB 자료의 운정온도 분석을 이용한 태풍 최대 풍속 지점의 객관적 결정)

  • Ha, Kyung-Ja;Oh, Byung-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.1
    • /
    • pp.86-98
    • /
    • 1998
  • In order to provide an information as input data of possible storm surges in advance, the typhoon center and maximum wind position analysis scheme must be developed for the initialization of pressure and wind field.This study proposes a semi-automatical and objective analysis method and a procedure on a real time basis using the satellite TBB data of the GMS IR1, NOAA satellite CH4 and CH5, and shows the result of an experimental analysis. It includes a simple method of determining the parameters of the typhoon using minimum top temperature of the convective cloud near the inner eyewall. The method analyzing the isotropic cross sectional variation of TBB gradient from center to environment was developed to determine the center of Rmax of typhoon. This position of intense eyewall from typhoon center can be considered as the position of maximum wind. The results of estimation of typhoon center show very good agreement to the results of synoptic analysis. It is found that the Rmax is approximately 50-200km. From the comparison of the GMS and NOAA IR TBB data, it is found that the Rmax from NOAA data tends to be longer than those from GMS data.

Classification by Erosion Shapes and Estimation of Sea-cliff Erosion Rates through Field Survey in Dundu-ri, Anmyeondo in Korea's Western Coast (현장 조사를 통한 안면도 둔두리 해식애의 침식율 산정 및 침식형태 분류)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.41-53
    • /
    • 2013
  • This research was carried out to classify erosion shapes and sea-cliff erosion rates were estimated through periodic field survey in Dundu-ri, Anmyeondo. Based on the results of field measurements using the datum-point, the annual sea-cliff erosion rate was estimated about 25~102cm/yr by point. The erosion rate gradually increases from spring to summer, but tends to decrease slightly in autumn. Specifically, the erosion rate between June and July indicated a rather decreasing trend, but showed a sharp increase between July and September. This was attributed to erosion that proceeds more rapidly than during other periods due to severe rainstorms in summer that had a direct impact on the study area as well as storm surges caused by hurricanes. Afterwards, the sea-cliff erosion rate gradually decreased in autumn, but reflected an increasing trend again from December to January. This was attributed to the mechanical weathering that actively progresses as bed rocks on the sea-cliff undergo repeated freezing and thawing in winter. The seacliff in Dundu-ri is divided into three types according to the erosion shape. First, Type A is observed in the sea-cliff composed of the same bed rocks and hard rock stratum. Second, Type B is found in the sea-cliff with a relatively gentler slope compared to Type A, since weathering material including soil is formed on the surface of the sea-cliff consisting of the same bed rocks and hard rock stratum. Lastly, Type C is observed in the sea-cliff where hard rock stratum is mixed with soft rock stratum. In this case, the soft rock stratum slumps and erodes first by precipitation and wave energy, followed by additional slumping of the exposed hard rock stratum.

Beach Deformation Caused by Typhoon Chaba in 2016 Along the Manseongri Coast Related Coastal Improvement Project (연안정비사업이 수행된 만성리 해수욕장에서 2016년 태풍 차바에 의한 해빈변화)

  • Park, Il Heum;Park, Wan-Gyu;Jeong, Seung Myong;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.710-718
    • /
    • 2017
  • After Typhoon Chaba (No.18, 2016) collided with Manseongri Beach, a coastal improvement project was carried out since strong external forces such as waves, storm surges and wave-induced currents were observed to cause beach deformation. The shoreline, beach area and beach volume were periodically surveyed. On the basis of this field data, the beach deformation that occurred at Manseongri Beach has been formally described. Over three months after beach nourishment work began, the beaches were gradually stabilized in terms of natural external forces. However, this stabilization was interrupted by Typhoon Chaba. After two months of typhoon weather, the beach returned to a stable state and no changes were observed until one year after the beach recovery work. Just after the typhoon hit, the shoreline receded from the northern side, where no reduction of external forces occurred, while the rear beach area submerged by breakwater advanced. Also, the beach volume decreased by $3,395m^3$ after the typhoon, due to erosion that occurred on the northern beach, with deposition taking place on the southern backshore area. Therefore, it has been concluded that the coastal improvement project undertaken at Manseongri Beach has significantly contributed to conservation in areas of wave-dominant sediment transport.

Study on Development of Digital Ocean Information Contents for Climate Change and Environmental Education : Focusing on the 3D Simulator Experiencing Sea Level Rise (기후변화 환경교육을 위한 디지털 해양정보 콘텐츠 개발 방안 연구 - 해수면 상승 체험 3D 시뮬레이터를 중심으로 -)

  • Jin-Hwa Doo;Hong-Joo Yoon;Cheol-Young Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.953-964
    • /
    • 2023
  • Climate change is undeniably the most urgent challenge that humanity faces today. Despite this, the level of public awareness and understanding of climate change remains insufficient, indicating a need for more proactive education and the development of supportive content. In particular, it is crucial to intensify climate change education during elementary and secondary schooling when values and ethical consciousness begin to form. However, there is a significant lack of age-appropriate, experiential educational content. To address this, our study has developed an innovative 3D simulator, enabling learners to indirectly experience the effects of climate change, specifically sea-level rise. This simulator considers not only sea-level rise caused by climate change but also storm surges, which is a design based on the analysis of long-term wave observation big data. To make the simulator accessible and engaging for students, we utilized the 'Unity' game engine. We further propose using this simulator as a part of a comprehensive educational program on climate change.