• Title/Summary/Keyword: Storm runoff water

Search Result 334, Processing Time 0.032 seconds

Development of Coupled SWAT-SWMM to Evaluate Effects of LID on Flow Reduction in Complex Landuse (복합토지유역에서의 LID적용에 따른 유출량 저감효과 분석을 위한 SWAT-SWMM 연계모델 개발)

  • Woo, Won Hee;Ryu, Jichul;Moon, Jong Pill;Jang, Chun Hwa;Kum, Donghyuk;Kang, Hyunwoo;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.495-504
    • /
    • 2012
  • In recent years, urbanization has been a hot issues in watershed management due to increased pollutant loads from impervious urban areas. The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and water quality studies at watershed scale. However, the SWAT has limitations in simulating water flows between HRUs and hydrological effects of LID practices. The Storm Water Management Model (SWMM) has LID capabilities, but it does not simulate non-urban areas, especially agricultural areas. In this study, a SWAT-SWMM coupled model was developed to evaluate effects of LID practices on hydrology and water quality at mixed-landuse watersheds. This coupled SWAT-SWMM was evaluated by comparing calibrated flow with and without coupled SWAT-SWMM. As a result of this study, the $R^2$ and NSE values with SWAT are 0.951 and 0.937 for calibration period, and 0.882 and 0.875 for validation period, respectively. the $R^2$ and NSE values with SWAT-SWMM are 0.877 and 0.880 for validation period. Out of four LID scenarios simulated by SWAT-SWMM model, the green roof scenario was found to be most effective which reduces about 25% of rainfall-runoff flows.

Eco-Hydrologic Assessment of Maintenance Water Supply on Oncheon Stream (온천천 유지용수 공급에 따른 생태수문환경 변화분석)

  • Jang, Ju-Hyoung;Kim, Sang-Dan;Sung, Ki-June;Shin, Hyun-Suk
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.973-983
    • /
    • 2007
  • The eco-hydrologic effects of maintenance water supply on Oncheon stream are studied using hydrologic, hydraulic and ecologic models. SWMM (Storm Water Management Model) is used for long-term simulation of runoff quantity and water quality from Oncheon stream watershed. Using the output hydrologic variables from SWMM, HEC-RAS (River Analysis System) is then used to simulate the hydraulics of water flow through Oncheon stream channels. Such hydrologic, hydraulic and water quality output variables from SWMM and HEC-RAS are served as input data to execute PHABSIM (Physical Habitat Simulation) for the purpose of predicting the micro-habitat conditions in rivers as a function of stream flow and the relative suitability of those conditions to aquatic life. It is observed from the PHABSIM results that the weighted usable area for target fishes has the maximum value at $2m^3/s$ of instream flow. However, mid and down stream areas that have concrete river bed and covered region are unsuitable for fish habitat regardless of instream flow increment. The simulation results indicate that the simple maintenance water supply is limited in its effect to improve the ecological environment in Oncheon stream. Therefore, it is imperative to improve water quality and to recover habitat conditions simultaneously.

Evaluation of Sediment Yield Prediction and Estimation of Sediment Yield under Various Slope Scenarios at Jawoon-ri using WEPP Watershed Model (WEPP Watershed Version을 이용한 홍천군 자운리 농경지 토양유실 예측 및 경사도에 따른 토양유실량 평가)

  • Choi, Jaewan;Hyun, Geunwoo;Lee, Jae Woon;Shin, Dong Suk;Kim, Ki-Sung;Park, Younshik;Kim, Jonggun;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.441-451
    • /
    • 2009
  • To evaluate the soil erosion best management practices, many computer models has been utilized over the years. Among those, the USLE and SWAT models have been widely used. These models estimate the soil erosion from the field using empirically-based USLE/MULSE in it. However, these models are not good enough to estimate soil erosion from highland agricultural watershed where severe storm events are causing soil erosion and muddy water issues at the receiving watersheds. Thus, physically-based WEPP watershed version was applied to a watershed, located at Jawoon-ri, Gangwon with very detailed rainfall data, rather than daily rainfall data. Then it was validated with measured sediment data collected at the sediment settling ponds and through overland flow. In this study, very detailed rainfall data, crop management data, soil data reflecting soil reconditioned for higher crop production were used in the WEPP runs. The $R^2$ and the EI for runoff comparisons were 0.88 and 0.91, respectively. For sediment comparisons, the $R^2$ and the EI values were 0.95 and 0.91. Since the WEPP provides higher accuracies in predicting runoff and sediment yield from the study watershed, various slope scenarios (2%, 3%, 5.5%, 8%, 10%, 13%, 15%, 18%, 20%, 23%, 25%, 28%, 30%) were made and simulated sediment yield values were analyzed to develop appropriate soil erosion management practices. It was found that soil erosion increase linearly with increase in slope of the field in the watershed. However, the soil erosion increases dramatically with the slope of 20% or greater. Therefore special care should be taken for the agricultural field with slope greater than 20%. As shown in this study, the WEPP watershed version is suitable model to predict soil erosion where torrential rainfall events are causing significant amount of soil loss from the field and it can also be used to develop site-specific best management practices.

Accuracy Improvement of Urban Runoff Model Linked with Optimal Simulation (최적모의기법과 연계한 도시유출모형의 정확도 개선)

  • Ha, Chang-Young;Kim, Byunghyun;Son, Ah-Long;Han, Kun-Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • The purpose of this study is to improve the accuracy of the urban runoff and drainage network analysis by using the observed water level in the drainage network. To do this, sensitivity analysis for major parameters of SWMM (Storm Water Management Model) was performed and parameters were calibrated. The sensitivity of the parameters was the order of the roughness of the conduit, the roughness of the impervious area, the width of the watershed, and the roughness of the pervious area. Six types of scenarios were set up according to the number and types of parameter considering four parameters with high sensitivity. These scenarios were applied to the Seocho-3/4/5, Yeoksam, and Nonhyun drainage basins, where the serious flood damage occurred due to the heavy rain on 21 July, 2013. Parameter optimization analysis based on PEST (Parameter ESTimation) model for each scenario was performed by comparing observed water level in the conduits. By analyzing the accuracy of each scenario, more improved simulation results could be obtained, that is, the maximum RMSE (Root Mean Square Error) could be reduced by 2.41cm and the maximum peak error by 13.7%. The results of this study will be helpful to analyze volume of the manhole surcharge and forecast the inundation area more accurately.

Road Runoff Treatment using Pilot Scale-NPS Treatment Plant Filling up Expended Polypropylene Media (발포고분자여재가 충전된 파일럿 규모의 비점오염물질 처리장치를 이용한 도로 강우유출수 처리)

  • Kim, Seogku;Oh, Hyecheol;Ahn, Jaehwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.711-718
    • /
    • 2014
  • Investigated the processing characteristics of the pollutants and runoff due to storm events in the actual application of the road fields and a Non-Point Sources (NPS) pilot scale equipment. This phenomenon has occurred in the influent bypass the blockage occurs after 90 min the expended polymeric media was filled with filtered column. When entering a treatment tank SS 200 mg/L or more high concentration of effluent treatment efficiency was reduced from the reaction time 60 min. Influent concentration less then SS 180 mg/L was stable handling. The $COD_{Cr}/SS$ ratio were analyzed with 0.67, median value. Showed 92.1% and 82.3% respectively with an average removal rate of the SS and the $COD_{Cr}$. If the influent concentration of TP is the 0.5 mg/L or less, the quality of the treated water is 0.1 mg/L levels were expressed in a stable process. And when entering the 1.0 mg/L or more of the treated water, had a greater than average 0.2 mg/L. If the influent concentration of TN is 4~10 mg/L, the treatment water quality level was kept a 1.5~3.0 mg/L. The average removal efficiency of TP and TN respectively 73.9%, 50.4%.

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Prioritizing the target watersheds for permeable pavement to reduce flood damage in urban watersheds considering future climate scenarios (미래 기후 시나리오를 고려한 도시 유역 홍수 피해 저감을 위한 투수성 포장 시설 대상 유역 우선순위 선정)

  • Chae, Seung Taek;Song, Young Hoon;Lee, Joowon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.159-170
    • /
    • 2022
  • As the severity of water-related disasters increases in urban watersheds due to climate change, reducing flood damage in urban watersheds is one of the important issues. This study focuses on prioritizing the optimal site for permeable pavement to maximize the efficiency of reducing flood damage in urban watersheds in the future climate environment using multi-criteria decision making techniques. The Mokgamcheon watershed which is considerably urbanized than in the past was selected for the study area and its 27 sub-watersheds were considered as candidate sites. Six General Circulation Model (GCM) of Coupled Model Intercomparison Project 6(CMIP6) according to two Shared Socioeconomic Pathway (SSP) scenarios were used to estimate future monthly precipitation for the study area. The Driving force-Pressure-State-Impact-Response (DPSIR) framework was used to select the water quantity evaluation criteria for prioritizing permeable pavement, and the study area was modeled using ArcGIS and Storm Water Management Model (SWMM). For the values corresponding to the evaluation criteria based on the DPSIR framework, data from national statistics and long-term runoff simulation value of SWMM according to future monthly precipitation were used. Finally, the priority for permeable pavement was determined using the Fuzzy TOPSIS and Minimax regret method. The high priorities were concentrated in the downstream sub-watersheds where urbanization was more progressed and densely populated than the upstream watersheds.

The Development of a Input Data Automatic Generation System for the Storm Management Simulation based on UIS (UIS기반 홍수관리 시뮬레이션을 위한 입력 데이터 자동 생성 시스템 개발)

  • Kim, Ki-Uk;Lee, Jeong-Eun;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.247-256
    • /
    • 2008
  • Recently, natural disasters like flooding damages have frequently occurred as to typhoons and local downpours affected by the climate changes. Many researches have actively been studied in analysing runoff models, the verification of their parameters, and the inflow on surfaces in order to lessen the damages. However, much time and effort needs in generating input files of the models in most current researches. Therefore, in this paper we develop a system for generating a simulation input data automatically. This system is connected to the EPA-SWMM based on the spatial data in the UIS systems and consists the simulation module for analysing urban flooding and the SWMM simulator module. Also, we construct a prototype using a range of regular inundation to generate a simulation input file. This system gives advantages showing inundation areas based on the map viewer as well as lessening errors of input data and simulation time.

  • PDF

Estimation of Soil Erosion and Sediment Yield in Mountainous Stream (산지형 하천의 토양침식 및 토사유출량 산정)

  • Ko, Jae-Wook;Yang, Sung-Kee;Yang, Won-Seok;Jung, Woo-Yeol;Park, Cheol-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.599-608
    • /
    • 2013
  • Jeju island, which is located along the moving path of typhoon, suffers from flooding and overflow by torrential rain. So abrupt runoff occurring, damages of downstream farm field and shore culturing farms are increasing. In this study, Oaedo stream, one of the mountainous streams on Jeju island, was selected as the basin of study subject and was classified into 3 sub-basins, and after the characteristics of subject basin, the soil erosion amount and the sediment delivery of the stream by land usage distribution were estimated with the use of SATEEC ArcView GIS, the sediment yield amount of 2000 and 2005 was analyzed comparatively. As a result of estimating the sediment yield amount of 2000, the three sub-basins were respectively 12,572.7, 14,080 and 157,761 tons/year. and sediment yield amounts were estimated as 35,172.9, 5,266 and 258,535 tons/year respectively in 2005. The soil erosion and sediment yield amount of 2005 using single storm rainfall were estimated high compared with 2000, but for sub-basin 2, the values rather decreased due to changes in land use, and the land coverage of 2005, since there are many classifications of land usage compared with 2000, enabling to reflect more accurate land usage condition, could deduce appropriate results. It is anticipated that such study results can be utilized as basic data to propose a direction to predict the amount of sediment yield that causes secondary flooding damage and deteriorates water quality within detention pond and grit chamber, and take action against damages in the downstream farm field and shore culturing farms.

A Study on the Application of Agricultural Nonpoint Source Pollution(AGNPS) Model using GIS and RS (GIS와 RS를 이용한 비점원오염 모형의 적용에 관한 연구)

  • Kim, Seong-Joon;Lee, Yun-Ah;Lee, Nam-Ho;Yoon, Kwang-Sik;Hong, Seong-Gu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.63-72
    • /
    • 2000
  • The objective of this study was to identify the applicability of AGNPS(Agricultural Nonpoint Source Pollution) model using RS data; Landsat TM merged by KOMPSAT EOC and GIS data. AGNPS model which is well-known distributed nonpoint source pollution model was used as the assessment tool. This model has the capability to adjust the level of pollutant load from farmstead and the fertilization level of upland field. A small agricultural watershed($4.12km^2$) which has 20 livestock farmhouses located in Gosan-myun, Ansung-gun was selected. AGNPS data were prepared by using Arc/Info, GRASS, ER-Mapper and Idrisi. Four storm events in 1999 were used for runoff calibration, and 2 storm events which were measured in hourly-base at 4 locations along the stream were used for water quality(TN, TP) calibration.

  • PDF