• 제목/요약/키워드: Storm Runoff

Search Result 414, Processing Time 0.025 seconds

An Analysis of Characteristic Parameters for the Design of Detention Pond in Urbanized Area (도시유역에서 저류지 설계를 위한 특성인자 분석)

  • Lee, Jae-Joon;Kim, Ho-Nyun;Kwak, Chang-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.37-47
    • /
    • 2006
  • Urban development results in increased runoff volume and flowrates and shortening in time of concentration, which may cause frequent flooding downstream. Flow retardation structures to limit adverse downstream effects of urban storm runoff are used. There are various types of flow retardation measures include detention basins, retention basins, and infiltration basins. In basic planning phase, a number of planning models of detention ponds which decide storage volume by putting main variables were used to design detention ponds. The characteristics of hydrological parameters $\alpha,\;\gamma$ which are used in planning models of detention pond were analyzed. In this study, detention ponds data of Disaster Impact Assessment report at 22 sites were analyzed in order to investigate correlation between characteristic of urban drainage basin parameter and characteristics of detention pond parameter due to urbanization effects. The results showed that storage volume was influenced by peak discharge ratio $\alpha$ more than runoff coefficient ratio $\beta$ and peak discharge ratio $\alpha$ was influenced by runoff coefficient ratio $\beta$ less than regional parameter n. Storage ratio was mainly influenced by duration of design rainfall in the case of trapezoidal inflow hydrograph such as Donahue et al. method.

A Study for an Automatic Calibration of Urban Runoff Model by the SCE-UA (집합체 혼합진화 알고리즘을 이용한 도시유역 홍수유출 모형의 자동 보정에 관한 연구)

  • Kang, Tae-Uk;Lee, Sang-Ho;Kang, Shin-Uk;Park, Jong-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.15-27
    • /
    • 2012
  • SWMM (Storm Water Management Model) has been widely used in the world as a typical model for flood runoff analysis of urban areas. However, the calibration of the model is difficult, which is an obstacle to easy application. The purpose of the study is to develop an automatic calibration module of the SWMM linked with SCE-UA (Shuffled Complex Evolution-University of Arizona) algorithm. Generally, various objective functions may produce different optimization results for an optimization problem. Thus, five single objective functions were applied and the most appropriate one was selected. In addition to the objective function, another objective function was used to reduce peak flow error in flood simulation. They form a multiple objective function, and the optimization problem was solved by determination of Pareto optima. The automatic calibration module was applied to the flood simulation on the catchment of the Guro 1 detention reservoir and pump station. The automatic calibration results by the multiple objective function were more excellent than the results by the single objective function for model assessment criteria including error of peak flow and ratio of volume between observed and calculated flow. Also, the verification results of the model calibrated by the multiple objective function were reliable. The program could be used in various flood runoff analysis in urban areas.

Application of a Penalty Function to Improve Performance of an Automatic Calibration for a Watershed Runoff Event Simulation Model (홍수유출 모형 자동 보정의 벌칙함수를 이용한 기능 향상 연구)

  • Kang, Taeuk;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1213-1226
    • /
    • 2012
  • Evolutionary algorithms, which are frequently used in an automatic calibration of watershed runoff simulation models, are unconstrained optimization algorithms. An additional method is required to impose constraints on those algorithms. The purpose of the study is to modify the SCE-UA (shuffled complex evolution-University of Arizona) to impose constraints by a penalty function and to improve performance of the automatic calibration module of the SWMM (storm water management model) linked with the SCE-UA. As indicators related to peak flow are important in watershed runoff event simulation, error of peak flow and error of peak flow occurrence time are selected to set up constraints. The automatic calibration module including the constraints was applied to the Milyang Dam Basin and the Guro 1 Pumping Station Basin. The automatic calibration results were compared with the results calibrated by an automatic calibration without the constraints. Error of peak flow and error of peak flow occurrence time were greatly improved and the original objective function value is not highly violated in the automatic calibration including the constraints. The automatic calibration model with constraints was also verified, and the results was excellent. In conclusion, the performance of the automatic calibration module for watershed runoff event simulation was improved by application of the penalty function to impose constraints.

Identifying dominant parameters of storm-sewer-overflows in seperate sewer system (강우시 도시배수구역의 유출특성 지배인자 분석)

  • Jung, Si Mon;Park, In Hyeok;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.105-114
    • /
    • 2008
  • Growth in population and urbanization has progressively increased the loadings of pollutants from non-point sources as well as point sources. Separated sewer overflows(SSO) have been considered as a major cause of water-quality deterioration of natural water-courses in the vicinity of the heavily urbanized areas. The factors defining the magnitude and occurrence of SSO are site-specific. It is important to know exact properties of pollutants contained in SSO to address water quality impacts that are caused by SSO inputs to the receiving waters. Site and event parameters found to have significant influences on urban runoff pollutant EMCs include total event rainfall, antecedent dry period, rainfall intensity. In this study, a field survey was carried out in some selected areas of Cheongju city. Literature from previous similar studies was consulted and some important factors affecting the runoff characteristics of urban drainage areas were analyzed for some selected survey points. It was found that the factors most affecting BOD are the number of dry days prior to rainfall and the intensity of the rainfall. The factor most affecting CODcr is the number of dry days prior to rainfall. The factors most affecting SS are the amount of rainfall and the number of dry days prior to rainfall. The factor most affecting TN is the amount of rainfall. The factor most affecting TP is the amount of rainfall and the number of dry days prior to rainfall.

  • PDF

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

Applicability Test of UK Design Flood Estimation Model FEH-ReFH to Korean Namcheon Watershed (영국의 설계홍수량 산정모형인 FEH-ReFH의 국내 남천유역 적용성 평가)

  • Kim, Sang-Ho;Ahn, So-Ra;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.68-80
    • /
    • 2013
  • The purpose of this study is to evaluate the applicability of UK design flood estimation model, FEH-ReFH through rainfall-runoff simulation of Korean watershed. For the Nam stream watershed($165.12km^2$), the model was calibrated using 6 storm events. The watershed and hydrological characteristics for the model requirements was prepared by developing input data pre-processors based on open GIS. The parameters of rainfall loss rate and unit hydrograph were calibrated from the observed data. The results can be used for improving and standardizing the Korean design flood estimation method.

Characteristics of NPS Pollutants and Treatment of Stormwater Runoff in Paved Area during a Storm (강우시 포장지역의 비점오염물질 유출 및 저감특성)

  • Son, Hyun-Geun;Lee, So-Young;Maniquiz, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • The increase of pollutant loadings from nonpoint sources affect the water quality of the major rivers in Korea. Consequently, the need for managing the nonpoint source (NPS) pollution becomes the main concern of the Korean Ministry of Environment (MOE). Recently, the policy was changed from pollutant concentration-restricting approach to the total maximum daily load (TMDL) approach to improve the water quality and protect the aquatic ecosystem. Part of the program is the construction of Best Management Practice (BMP) pilot facilities basically to control NPS. Most of the BMPs adopted were foreign technologies which could not be properly employed in the country due to some limitations such as climate, watershed characteristics, etc. In other words, to be able to apply the BMPs, research on its applicability is necessary. In this study, a three-year monitoring has been conducted to assess the treatment performance of the BMP installed in highway toll plaza and parking lot. The data gathered aid in the characterization of NPS pollutants in runoff and estimation of the pollutant removal efficiency of the BMP. The results will be used for the future implementation of BMP in different land uses as well as for the determination of optimum operation and maintenance.

  • PDF

Improvement of Huff's Method Considering Severe Rainstorm Events (집중호우 사상을 고려한 Huff의 4분위법 개선방안)

  • Choi, Soyung;Joo, Kyungwon;Shin, Hongjoon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.985-996
    • /
    • 2014
  • When designing hydraulic structures, the chosen method of time distribution in a hyetograph is highly significant. There are several methods used for measuring time distribution. In the case of Huff (1967), which is widely used in Korea, the Ministry of Construction and Transportation (MOCT, 2000), and the Ministry of Land, Transport and Maritime Affairs (MOLTMA, 2011) have long been increasing their use of this method. The MOLTMA uses the conventional Huff method's measurement of 1 inch (25.4 mm) as the threshold. Many researchers have pointed out that this method often leads to underestimation, because of the excessive flatness. Therefore, for this study, a new time distribution method was developed to analyze only extreme rainfall events-those over the standard of severe rainstorms (that is, more than 30 mm per hour or 80 mm per day)-and that was verified using a rainfall-runoff model and applying it to a real basin.

A Review of the Application of Constructed Wetlands as Stormwater Treatment Systems

  • Reyes, Nash Jett;Geronimo, Franz Kevin;Guerra, Heidi;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.162-162
    • /
    • 2022
  • Stormwater management is an essential component of land-use planning and development. Due to the additional challenges posed by climate change and urbanization, various stormwater management schemes have been developed to limit flood damages and ease water quality concerns. Nature-based solutions (NBS) are increasingly used as cost-effective measures to manage stormwater runoff from various land uses. Specifically, constructed wetlands were already considered as socially acceptable green stormwater infrastructures that are widely used in different countries. There is a large collection of published literature regarding the effectiveness or efficiency of constructed wetlands in treating stormwater runoff; however, metadata analyses using bibliographic information are very limited or seldomly explored. This study was conducted to determine the trends of publication regarding stormwater treatment wetlands using a bibliometric analysis approach. Moreover, the research productivity of various countries, authors, and institutions were also identified in the study. The Web of Science (WoS) database was utilized to retrieve bibliographic information. The keywords ("constructed wetland*" OR "treatment wetland*" OR "engineered wetland*" OR "artificial wetland*") AND ("stormwater*" or "storm water*") were used to retrieve pertinent information on stormwater treatment wetlands-related publication from 1990 up to 2021. The network map of keyword co-occurrence map was generated through the VOSviewer software and the contingency matrices were obtained using the Cortext platform (www.cortext.net). The results obtained from this inquiry revealed the areas of research that have been adequately explored by past studies. Furthermore, the extensive collection of published scientific literature enabled the identification of existing knowledge gaps in the field of stormwater treatment wetlands.

  • PDF

Analysis of outflow reduction effect of bioretention in small watersheds during short-term rainfall (단기강우 시 소유역내 식생저류지의 유출량 저감성능 분석)

  • Kim, Jaemoon;Baek, Jongseok;Kim, Byungsung;Kwon, Soonchul
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.855-869
    • /
    • 2023
  • Low Impact Development (LID) technology has been attracting attention as a countermeasure to solve frequent flood damage in urban areas. LID involves recovery of the natural circulation system based on infiltration and storage capacity at the site of rainfall runoff, to protect the aquatic ecosystem from the effects of urbanization. Bioretention as an element of LID technology reduces outflow through storage and infiltration of storm water runoff, and minimizes the effects of non-point pollutants. Although LIDs are being studied extensively, the amount of quantitative research on small watersheds with bioretention has been inadequate. In this study, a bioretention model was constructed in a small watershed using Korea-Low Impact Development Model (K-LIDM), which was conducted quantitative hydrologic analysis. We anticipate that the results of the analysis will be used as reference data for future bioretention research related to watershed characteristics, vegetation type, and soil condition.