• Title/Summary/Keyword: Storage Temperature

Search Result 4,411, Processing Time 0.031 seconds

Storage potential of low temperature adapted shiitake mushroom under freezing temperature (저온성 표고버섯의 빙점하 저장 잠재력)

  • Hwang, Yong Soo;Seo, Geon Sik
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.197-202
    • /
    • 2013
  • This study was aimed to find the storage potential of low temperature adapted shiitake mushroom under freezing temperature ($-3^{\circ}C$). Fresh shiitake mushroom was harvested at late Feb. and cooled to target temperature, $-3^{\circ}C$ in the cooling room for 24 hr. Cooled mushroom were then placed in plastic boxes, wrapped with plastic film ($30{\mu}m$), and stored at $-3^{\circ}C$ for 2 months. Weight loss of mushroom was ranged from 2.1 to 3.2%. Dry weight per unit fresh weight, however, was slightly increased because of moisture loss. Firmness of fruit body increased from $0.95kg/cm^{-2}$ (before storage) to $1.13kg/cm^{-2}$ (after 2 month storage). About half amount of starch was lost during 2 month storage. The amount of total and reducing sugars remained relatively constant. After storage, freshness of mushroom was recovered by thawing treatment. When recovered mushroom were packaged with styrofoam tray and PVC wrapping, and exposed to ambient and $10^{\circ}C$, respectively, brown spot on the gill of fruit body was found and slight decay symptom was also found at ambient temperature only but not at $10^{\circ}C$. Results indicated that low temperature adapted shiitake mushroom has a storage potential under freezing temperature ($-3^{\circ}C$). Freezing storage technology of fresh shiitake mushroom will contribute the increase of storability up to 2 months.

Changes of the Characteristics of ′Kurakatawase′ and ′Mibaek′ Peaches during Storage Period (′창방조생′과 ′미백′ 복숭아의 저장중 특성 변화)

  • 최금주;이제홍;주선종;김기식;박성규
    • Food Science and Preservation
    • /
    • v.8 no.3
    • /
    • pp.246-251
    • /
    • 2001
  • This study was conducted to investigate the change of qualities of peaches by different packing types and humidity during storage period. The weight loss ratios of 'Kulakatawase' and 'Mibaek' by non-packing were about 6.8% and 4.9% for 4 days storage at room temperature, respectively whereas, the peaches by packing with 30㎛ LDPE were less than 1% for 25 days storage at low temperature and high humidity(95 $\pm$3%). The firmness values of the peaches were not decreased during storage at low temperature compared to the firmness values of the peaches during storage at room temperature. Little difference of total acidity and soluble solids of the peaches was during storage at low temperature. The contents of fructose and glucose in peaches were increased slightly after storage for 25 days but that of sucrose was decreased slightly. When peaches were stored at low temperature(0∼2$\^{C}$) and high humidity(95$\pm$ 3%) after packing with 30㎛ LDPE or 25㎛ perforated polyolefin film 'Kurakatawase ' and 'Mibaek' were able to storage for 20 and 25days, respectively.

  • PDF

Studies of Gangjung (4) - Relationship of Acceleration Storage and Room Temperature Storage of Insam (Ginseng) Gangjung - (강정에 관한 연구(4) - 인삼 강정의 가속저장과 실온저장과의 관계 -)

  • Lee, Sook-Kyung;Kim, Youn-Tae
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.4
    • /
    • pp.218-223
    • /
    • 2003
  • This study was to carried out to estimate the relationship between acceleration storage and room temperature storage of gangjung (control unit) and dried insam gangjung (experiment unit), by acid value and peroxide value. The result were summarized as follows. : 1. Test for acid value of control unit, every 1 hour after acceleration storage is similar to each 7 days after room temperature storage is imilar to each 7.5 days after room temeprature storage. 2. Test for peroxide value of control unit, evry 1 hour after acceleration storage is similar to each 7.5 days after room temperature storage but to test peroxide value of experiment unit, every 1 hour after acceleration storage is imilar to each 7.7 days after room temperature storage. 3. In case of the oxidized flavor, control unit is not detected during storage stability but the experiment unit is detected unit is detected 1 hour ahead of acceleration storage than room temperature storage.

Characteristics of High-Temperature Energy Storage Materials (고온 축열재료의 특성)

  • Shin, Byung-Chul;Kim, Sang-Done;Park, Kun-You;Park, Won-Hoon
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.61-74
    • /
    • 1987
  • This review evaluates the state of art in the field of high-temperature energy storage materials and systems. The physical and chemical properties, corrosion data and practical applications of the phase change materials, especially the inorganic salts applicable to storage temperature in the range of $100-850^{\circ}C$ have been summarized. Fluoride salts have excellent thermal storage properties, but these are less attractive in terms of cost and corrosion problem of container materials. The nitrate and nitrite have attractive properties in the temperature range up to $600^{\circ}C$, at which the rate of decomposition becomes unacceptable. Carbonates euteutic salts can be considered as the most promising energy storage material on the basis of their low cost and excellent material compatibility for corrosion in the temperature range up to $850^{\circ}C$.

  • PDF

Heat Transfer Characteristics of High Temperature molten salt storage for Solar Thermal Power Generation (태양열 발전에서 태양열에너지 수송을 위한 고온 축열 물질의 열절달 특성)

  • Mao, Aiming;Kim, Ki-Man;Kang, Yong-Heack;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.190-193
    • /
    • 2008
  • The heat transfer characteristics of molten salt storage system for the solar thermal power generation were investigated. Temperature profiles and the heat transfer coefficients during the storage and discharge stage were obtained with the steam as the heat transfer fluid. Two kinds of inorganic salt were employed as the storage materials and coil type of heat exchanger were installed in both tanks to provide the heat transfer surfaces during the storage and discharge stage. The effects of steam flow rates, flow direction of steam in the storage tank and the initial temperature of storage and discharge tank on the heat transfer were tested.

  • PDF

Effect of CA Storage Conditions on the Internal Breakdown of Fuji Apple Fruits under CA Storage (Fuji 사과의 CA저장중 저장조건이 과육갈변에 미치는 영향)

  • 이주백;최종욱
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.227-235
    • /
    • 1997
  • The internal breakdown of Fuji apple during CA storage classified as watercore breakdown, low temperature breakdown and CO2 injury. This study was undertaken to investigate the watercore breakdown injury factors of Korean Fuji apple during CA storage. The development of internal breakdown was more increased with the larger size, the later harvest time and the hither CO2 gas level. But in internal breakdown fruit of the titratable acidity and soluble solid decreased significantly, the pH of fruit juice and the production of carbon dioxide was greatly increased. The best gas levels of CA storage was 2% oxygen and 3% carbon dioxide. Thus, the predictable parameters of internal breakdown of fruit were increase in pH on decrease titratable acidity within 2 months of CA storage, increase carbon dioxide. So, it was found that the best CA sotrage for internal breakdown control of fruit during CA storage was delayed CA storage methods after low temperature storage immediate harvest of apple and than took a step. The delayed CA storage after low temperature storage for 2 months was more effective in the prevention of development of internal breakdown than immediate CA storage after harvest.

  • PDF

Characteristics of Storage Tank on Harvest Type Ice Storage System (하베스트형 빙축열시스템의 축열조 특성)

  • Choi, In-Su;Lee, Ho-Saeng;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.210-215
    • /
    • 2000
  • A fundamental study on the under water harvest-type ice storage system and its temperature characteristics in ice storage system was performed experimentally. The experiments were conducted by changing the inlet refrigerant temperature of an evaporator to analyzing the thermal fluid motion inside the ice storage tank. From the experimental results, the cold storage characteristics were investigated by measuring the axial and radial temperature variations inside the ice storage tank with respect to the inlet and outlet refrigerant temperatures of an evaporator. In case of the under water harvest-type ice storage system, thermal fluid motion inside the ice storage tank was shown differently in comparison with that of other ice storage systems. During the cooling storage process, there was no supercooling phenomenon in the ice storage tank. These results show the characteristic of this system and the possibility of application to other fields.

  • PDF

Enhancement of the round-trip efficiency of liquid air energy storage (LAES) system using cascade cold storage units

  • Kim, Jhongkwon;Byeon, Byeongchang;Kim, Kyoung Joong;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.45-50
    • /
    • 2020
  • In this research, the variation of round-trip efficiency in a liquid air energy storage system (LAES) is calculated and an optimal configuration is found. The multiple stages of cold energy storage are simulated with several materials that process latent heat at different temperature ranges. The effectiveness in the charging and discharging processes of LAES is newly defined, and its relationship with the round-trip efficiency is examined. According to defined correlation, the effectiveness of the discharging process significantly affects the overall system performance. The round-trip efficiency is calculated for the combined cold energy storage materials of aqueous dimethyl sulfoxide (DMSO) solution, ethanol, and pentane theoretically. The performance of LAES varies depending on the freezing point of the cold storage materials. In particular, when the LAES uses several cold storage materials, those materials whose freezing points are close to room temperature and liquid air temperature should be included in the cold storage materials. In this paper, it is assumed that only latent heat is used for cold energy storage, but for more realistic analyzes, the additional consideration of the transient thermal situation to utilize sensible heat is required. In the case of such a dynamic system, since there is certainly more increased heat capacity of the entire storage system, the volume of the cold energy storage system will be greatly reduced.

Effects of Storage Temperature and pH on the Stability of Antibacterial Effectiveness of Garlic Extract against Escherichia coli B34

  • Kim, Myung-Hee;Kang, Young-Dong;Kyung, Kyu-Hang
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.720-723
    • /
    • 2001
  • The effect of long-term storage on garlic antibacterial activity was investigated. A concentration of 5% or more garlic was found to be necessary to completely inhibit Eschrichia coli growth in tryptic soy broth. This value is substantially higher than the minimum inhibitory concentration of 1% for E. coli reported previously. pH-modified garlic extract was stored at different temperatures to investigate the impact of storage conditions (i.e., temperature, pH, period of storage) on the stability of the antibacterial activity of the garlic extract used against E. coli B34. The antibacterial effectiveness of the garlic extract against E. coli remained stable when both the storage temperature and the pH of the extract were kept low. When the garlic extract was stored at $40^{\circ}C and above, most or all of the garlic antibacterial activity disappeared after a 24-h storage period, regardless of the storage pH. The antibacterial activity was weakened when the pH of the garlic extract was adjusted to 8, and at low temperatures.

  • PDF

A Study on the Optimal Control Strategy of Air-Conditioning System with Slab Thermal Storage - The Difference by the Presence of Radiant Heat as a Criterion Factor - (슬래브축열의 최적제어방책에 관한 연구 -평가요소로 복사열의 고려 유무에 의한 차이-)

  • Jung Jae-Hoon;Shin Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.287-296
    • /
    • 2006
  • In this paper, optimal control strategy of the air-conditioning system with slab thermal storage was investigated based on the optimal control theory. An optimal heat output to the plenum chamber and the air-conditioned room was determined based on two kinds of criterion functions. The first one requires small deviation in room air temperature from a set-point value and low energy consumption. It is shown that the optimized control is to store heat through the whole storage time and to increase storage rate gradually with time. As the second case, a criterion that both a deviation of operative temperature from a set-point temperature and the energy consumption should be minimized was adopted. The room air temperature was a little high and the cooling load during storage time was reduced, compared with the results when a criterion function considering only the room air temperature is used.