• Title/Summary/Keyword: Storage Electrode

Search Result 330, Processing Time 0.022 seconds

Calibration of SAW Based Capacitive Sensor Using Lumped Component and High Precision Gap Measurement (집중 소자를 이용한 표면 탄성파 장치 기반의 용량 성 센서 보정 및 이를 이용한 초정밀 간극 측정)

  • Kim, Jae-Geun;Ko, Byung-Han;Park, Young-Pil;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.16-21
    • /
    • 2012
  • SAW device is widely used as filters, sensors, actuators in various technologies. And capacitive sensor is tremendously used to measure pressure, gap, etc. The application of SAW device as signal conditioner of capacitive sensor reduces noise level and enables high precision measurement. The response increase of SAW based capacitive sensor is produced just before the two capacitive electrode contacts by the existence of parasitic resistance of capacitive electrode. In this paper, we analyze the effects of parasitic resistance and propose the calibrating method using lumped component and execute the high precision gap measurement using calibrated system. And xx nm resolution and yy ${\mu}m$ stroke was attained.

Fabrication of Three-Dimensionally Arrayed Polyaniline Nanostructures

  • Gwon, Hye-Min;Ryu, Il-Hwan;Han, Ji-Yeong;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.220-220
    • /
    • 2012
  • The supercapacitors with extraordinarily high capability for energy storage are attracting growing attention for their potential applications in portable electronic equipments, hybrid vehicles, cellular devices, and so on. The nanostructuring of the electrode surface can provide large surface area and consequently easy diffusion of ions in the capacitors. In addition, compared to two-dimensional nanostructures, the three-dimensional (3D) nano-architecture is expected to lead to significant enhancement of mechanical and electrical properties such as capacitance per unit area of the electrode. Polyaniline (PANi) is known as promising electrode material for supercapacitors due to its desirable properties such as high electro activity, high doping level and environmental stability. In this context, we fabricated well-ordered 3D PANi nanostructures on 3D polystyrene (PS) nanospheres which was arrayed by layer-by-layer stacking method. The height of the PANi nanostructures could be controlled by the number of PS layers stacked. 3D PANi hollow nanospheres were also fabricated by dissolving inner PS nanospheres, which resulted in further enhancement of the surface area and capacitance of the electrode.

  • PDF

The Properties of the Metal Hydride electrodes prepared by Silicon Sealant (Si-sealant를 이용하여 제조한 금속수소화물 전극의 특성)

  • CHOI, Jeon;PARK, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.4 no.2
    • /
    • pp.23-28
    • /
    • 1993
  • The $(LM)Ni_{4.5}Co_{0.1}Mn_{0.2}Al_{0.2}$ hydrogen storage alloy powders were conducted 25wt% electroless copper plating in an acidic bath. For the preparation of a hydride electrodes, the copper coated alloy powder was mixed with Si-sealant(organosilicon) and compacted with $6t/cm^2$ at room temperature. The electrode characteristics were examined through electrochemical measurements in a half cell. As a sealant contents increased, the initial discharge capacity of si-sealant bounded electrode was lower and the activation rate in high current density was slower. For extended cycles, however, the electrodes with the Si-sealant were superior in a high rate discharge and useful range of temperature over the sealant-free electrode. In addition, the cycle life increased with increasing the amount of Si-sealant added. It can be suggested from the results that the Si-sealant as a binder could be applied to the preparation of the metal hydride electrode.

  • PDF

Preparation and Electrochemical Characteristics of CNFs/DAAQ Electrode for Energy Storage

  • Kim Hong-Il;Kim Han-Joo;Choi Weon-Kyung;Osaka Testuya;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.171-175
    • /
    • 2005
  • A new type of supercapacitor was constructed by using carbon nanofibers (CNFs) and DAAQ (l,5-diaminoanthraquinone) oligomer. DAAQ was deposited on the carbon nanofibers by chemical polymerization with ammonium peroxodisulfate (($NH_4)_2S_2O_8$) as oxidant in the 0.1 M $H_2SO_4$. Polymerization reaction was carried out with constant sonication. From the analysis, it is clear that surface of carbon nanofibers was quite uniformly coated with DAAQ. The performance characteristics of the supercapacitors have been evaluated using Cyclic Voltammetry. CNFs/DAAQ based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system. CNFs/DAAQ composite electrode showed relatively good capacitance (7 Ah/kg) compared to conventional capacitors in the range of $-0.4\~0.4$.

Carbon-free Polymer Air Electrode based on Highly Conductive PEDOT Micro-Particles for Li-O2 Batteries

  • Yoon, Seon Hye;Kim, Jin Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.220-228
    • /
    • 2018
  • This study introduced a carbon-free electrode for $Li-O_2$ cells with the aim of suppressing the side reactions activated by carbon material. Micro-particles of poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, were used as the base material for the air electrode of $Li-O_2$cells. The PEDOT micro-particles were treated with $H_2SO_4$ to improve their electronic conductivity, and LiBr and CsBr were used as the redox mediators to facilitate the dissociation of there action products in the electrode and reduce the over-potential of the $Li-O_2$ cells. The capacity of the electrode employing PEDOT micro-particles was significantly enhanced via $H_2SO_4$ treatment, which is attributed to the increased electronic conductivity. The considerable capacity enhancement and relatively low over-potential of the electrode employing $H_2SO_4$-treated PEDOT micro-particles indicate that the treated PEDOT micro-particles can act as reaction sites and provide storage space for the reaction products. The cyclic performance of the electrode employing $H_2SO_4$-treated PEDOT micro-particles was superior to that of a carbon electrode. The results of the Fourier-transform infrared spectroscopic analysis showed that the accumulation of residual reaction products during cycling was significantly reduced by introducing the carbon-free electrode based on $H_2SO_4$-treated PEDOT micro-particles, compared with that of the carbon electrode. The cycle life was improved owing to the effect of the redox mediators. The refore, the use of the carbon -free electrode combined with redox mediators could realize excellent cyclic performance and low over-potential simultaneously.

Fabrication of Hemoglobin/Silver Nanoparticle Heterolayer for Electrochemical Signal-enhanced Bioelectronic Application

  • Lee, Taek;Yoon, Jinho;Choi, Jeong-Woo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.556-560
    • /
    • 2017
  • A hemoglobin/silver nanoparticle heterolayer was fabricated for bioelectronic device with electrochemical signal-enhancement effect. As a device element, a hemoglobin, the metalloprotein, contained the heme group that showed the redox property was introduced for charge storage element. For electron transfer facilitation, a silver nanoparticle was introduced for electrochemical signal facilitation, the hemoglobin was immobilized onto Au substrate using chemical linker 6-mercaptohexanoic acid (6-MHA). Then, the silver nanoparticle was immobilized onto fabricated hemoglobin/6-MHA heterolayers by layer-by-layer (LbL) method. The surface morphology and surface roughness of fabricated heterolayer were investigated by atomic force microscopy (AFM). The redox property of hemoglobin/silver nanoparticle heterolayer was investigated by a cyclic voltammetry (CV) experiment for obtaining an oxidation potential and reduction potential. Moreover, for the assessing charge storage function, a chronoamperometry (CA) experiment was conducted to hemoglobin/silver nanoparticle-modified heterolayer electrode using oxidation and reduction potentials, respectively. Based on the results, the fabricated hemoglobin/silver nanoparticle heterolayer showed that an increased charge storage effect compared to hemoglobin monolayer-modified electrode.

Preparation of polythiophene electrode and it's application for supercapacitor (폴리싸이오펜전극의 제조와 수퍼커패시터로서의 응용)

  • Kim, Han-Joo;Ryu, Boo-Hyung;Naoi, Katsuhiko;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.573-576
    • /
    • 2001
  • In the research fields of energy storage, and more specifically of supplying high powers, electrochemical supercapacitor have been among the most studied systems for many years. One of the possible applications is in electric vehicles. We have been working on electronically conducting polymers for use as active materials for electrodes in supercapacitors. These polymers have the ability of doping and undoping with rather fast kinetics and have an excellent capacity for energy storage. polythiophene (Pth) and polyparafluorophenylthiophene (PFPT) have been chemically synthesized for use as active materials in supercapacitor electrodes. Electrochemical characterization has been performed by cyclic voltammetry and an electrode study has been achieved to get the maximun capacity out of the polymers and give good cyclability. specific capacity values of 7mAh/g and 40mAh/g were obtained for PFPT and poly thiophene, respectively. Supercapacitors have been built to characterize this type of system. Energy storage levels of 260F/g were obtained with Pth and 110F/g with PFPT.

  • PDF