• Title/Summary/Keyword: Stop mode control

Search Result 38, Processing Time 0.022 seconds

A Position Control of BLDC Motor in a Rail Guided System for the Un-maned Facility Security (무인 설비 감시용 레일 가이드 구동장치에서 BLDC 전동기의 위치 제어)

  • Bae, Jong-Nam;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2017
  • A low-cost BLDC motor with hall sensor is used to drive the position control of a facility security monitoring system in this paper. Low measurable frequency of the hall sensor signal in low-speed regions results in difficulty in obtaining accurate speed detection and position control. To improve system control performance, we propose a variable gain of position controller and stop mode control scheme according to the motor speed and error position with pre-set deceleration time. The proposed stop mode control scheme is activated around the stop position to forcibly move the BLDC motor to the stop position in low speed. In the proposed stop mode, the motor current is controlled by the actual speed with the reference rotating angle. The control performance of the proposed position control is verified through experiments at the actual rail guided facility security monitoring system.

Triple-mode Blind Equalization Algorithm for QAM Demodulation (QAM 복조용 삼중 모드 채널 등화 알고리즘)

  • Wui, Jung-Hwa;Hwang, Hu-Mor
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3138-3140
    • /
    • 1999
  • We propose a robust blind equalization algorithm based on dual-mode algorithm which incorporates a stop-and-go technique. The constant modulus algorithm(CMA) exhibits very slow convergence when applied to QAM signals and generates phase error. We show that convergence properties of the dual-mode MCMA can be significantly improved by simply adding a stop-and-go technique. To speed up the convergence rate, the TMA-MCMA operates in triple mode that is based on the dual-mode of the MCMA incorporated with the tap-updating control modes of the SGA.

  • PDF

A Design and Implementation of Control Application for Arduino Prime Smart Car

  • Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.59-64
    • /
    • 2016
  • In this paper, we design and implement an Application based on android platform, which can control arduino Prime Smart Car using Bluetooth communication. This Application consist of Bluetooth communication module, manual mode module, and line-tracer mode module. In the Bluetooth communication module, it checks the on/off status of Smartphone Bluetooth. If Bluetooth status is off, it activates Bluetooth, selects the corresponding device from Bluetooth device list, and connects with a pair. In order to reduce coding time, we implements Bluetooth communication using inherited class from android Bluetooth package. In the manual mode module, it implements six direction moving button and stop button, which can control arduino Prime Smart Car. In the line-tracer mode module, it implements Prime Smart Car with self-driving function using TCRT5000 sensor. And moving button and stop button is disabled.

Development of Automatic Idle Stop Control System with Signals of ECU and TCU (ECU 및 TCU 신호를 이용한 자동차의 공회전 자동정지 제어 시스템 개발)

  • Kim Seong-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1601-1606
    • /
    • 2005
  • In this study, an automatic idle stop control system was developed, which automatically stops the idle state engine as it detects the stop state of the car for several seconds and restarts the stopped engine with the driver's electrical signal. It is composed of microprocessor and the related electronic circuits and communicates with ECU and TCU. With accurate and confirmed operating performance, the control system was equipped in the test car which was proceeded the ECE15+EUDC mode test. It is confirmed that the control system, ASG has much favourable effects on reducing the fuel consumption and harmful exhaust emissions.

A Study on the precious stopping control for the automatic electric rail cars (도시철도 전차의 정위치 정차 제어에 관한 연구)

  • Park, Mun-Gyu;Kim, Gyu-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.228-230
    • /
    • 2006
  • While trains perform a complete precision stopping control at stop point, it is essential to keep better commuters comfort in prompt. Because a train's brake force tends to increase a brake effort in a low speed and a low brake effort, a brake force in motor cars must be increased to keep better passenger comfort, to control the special braking qua1ities and to prevent the impact of the automatic coupler rather than trailer's, Rail cars must have a special braking process for the train stopping control. In the train stop mode, the train stopping control is designed to start at 20km/h. It starts by Dynamic brake blending, and then finally stops by only the friction. If these process are not exactly activated, the train may fail a complete precision stop. In this report, it studied the electric and friction brake processing during the precious stopping control. To achieve exact test results, the speed reference has to be reduced the calculated difference. In the precision stopping control. the ways of the keeping brake force in motor car was analyzed and some solutions of controling air pressure was brought up by means of direct test in main line, This study was based on line 5 in Seoul Metropolitan subway.

  • PDF

Study on the Design of Operation Scenario for Replacement of a Railway Signaling System (철도신호시스템 교체에 따른 운행 시나리오 도출에 관한 연구)

  • Jeong, Rag-Gyo;Kim, Baek-Hyun;Kang, Seok-Won;Kho, Young-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1064-1069
    • /
    • 2014
  • The railway signalling system plays an essential role in the headway and routing control for a safe and efficient train operation. The reliable and safe operation of the system is very important because the failure of the railway signalling system can lead to the collision, derailment, or unexpected stop of a train. So far, the conventional wayside signal mode (ATS: Automatic Train Stop) has been generally used as the railway signalling system. However, this system is highly linked to a risk of major accidents resulted from human mistakes such as missing a signal or careless control of train speed. Accordingly, the onboard signal mode (ATC: Automatic Train Control) as an alternative of ATS has been recently introduced and applied to transmit effectively the information on speed control of a train by using computers and communication equipment. In the process of replacing the obsolete signal system, it is necessary to switch over the system while providing passengers with normal services. Therefore, the integration of a railway signaling system compatible for both ATS and ATC and its interface is discussed in this study. In particular, the implementation scenario required for operation planning of the integrated system was designed, and the results as well as effects of its applicability test were also presented.

A Reaserch on Fuel Economy Improvement by Intelligent Idle Stop & Go (Intelligent Idle Stop & Go 제어 기법에 따른 연비 효과 연구)

  • Hwang, Gyu-Man;Kwon, Young-Tae;Ko, Sung-Suk;Choi, Jae-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.71-76
    • /
    • 2014
  • This Research focuses on how to maximize fuel economy improvement of I.S.G. while keeping 12V system. With 12V system the maximum gain of fuel economy with I.S.G. is known to be about 3~5% in FTP-75 mode because engine stop is only conducted in standstill idle. But in this study deceleration engine stop (engine speed is zero) has been tried additionally and the optimum condition for deceleration engine stop was found to maximize fuel economy improvement in practical point of view, the result of which is about 8.8% in FTP-75.

Test Bed for Vehicle Longitudinal Control Using Chassis Dynamometer and Virtual Reality: An Application to Adaptive Cruise Control

  • Mooncheol Won;Kim, Sung-Soo;Kang, Byeong-Bae;Jung, Hyuck-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1248-1256
    • /
    • 2001
  • In this study, a test bed for vehicle longitudinal control is developed using a chassis dynamometer and real time 3-D graphics. The proposed test bed system consists of a chassis dynamometer on which test vehicle can run longitudinally, a video system that shows virtual driver view, and computers that control the test vehicle and realize the real time 3-D graphics. The purpose of the proposed system is to test vehicle longitudinal control and warning algorithms such as Adaptive Cruise Control(ACC), stop and go systems, and collision warning systems. For acceleration and deceleration situations which only need throttle movements, a vehicle longitudinal spacing control algorithm has been tested on the test bed. The spacing control algorithm has been designed based on sliding mode control and road grade estimation scheme which utilizes the vehicle engine torque map and gear shift information.

  • PDF

Experimental Evaluation of HDD's Non-Contact Start/Stop Motion Using Shape Memory Alloy Actuator (SMA 작동기를 이용한 HDD의 비접촉 시동 및 정지 기구의 실험적 성능 고찰)

  • 임수철;박종성;최승복;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1122-1129
    • /
    • 2001
  • In this work, we propose a new type of HDD suspension featuring shape memory ally (SMA) actuator in order to prevent the contact between the slider and disk. The principal design parameters are obtained from the modal analysis using finite element analysis, and then the dynamic model is established to formulate the control scheme for Non-Contact Start/Stop mode drive. Subsequently, a robust Η$_{\infty}$, control algorithm is designed by integrating experimentally-obtained SMA actuator dynamics to the proposed suspension system. The controller is empirically realized and control results for different load/unload profiles are presented in time domain. In addition, the contact signal between the slider and disk is measured by the electrical resistance method.istance method.

  • PDF

A Robust Control Approach for Maneuvering a Flexible Spacecraft

  • Sung, Yoon-Gyeoung;Lee, Jea-Won;Kim, Hunmo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • In the paper, a robust control mechanism is presented to maneuver a flexible spacecraft with the deflection reduction during large slewing operation at the same time. For deflection reduction and maneuvering of the flexible spacecraft, a control mechanism is developed with the application of stochastic optimal sliding-mode control, a linear tracking model and input shaping technique. A start-coast-stop maneuver is employed as a slewing strategy. It is shown that the control mechanism with he strategic maneuver results in better performance and is more efficient than rigid-body-like maneuver, by applying to the Spacecraft Control Laboratory Experiment (SCOLE) system in a space environment.

  • PDF