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A Robust Control Approach for Maneuvering a
Flexible Spacecraft

Yoon-Gyeoung Sung*, Jea-Won Lee
School of Mechanical Engineering, Yeungnam University
Hunmo Kim
School of Mechanical Engineering, Sungkyunkwan University

In the paper, a robust control mechanism is presented to maneuver a flexible spacecraft with
the deflection reduction during large slewing operation at the same time. For deflection
reduction and maneuvering of the flexible spacecraft, a control mechanism is developed with the
application of stochastic optimal sliding-mode control, a linear tracking medel and input

shaping technique. A start-couast-stop maneuver is employed as a slewing strategy. It is shown
that the control mechanism with the strategic maneuver results in better performance and is more
efficient than rigid-body-like maneuver, by applying to the Spacecraft Control Laboratory
Experiment (SCOLE) system in a space environment.
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1. Introduction

In the future generation of flexible spacecraft,
the control system design will be a challenging
problem because of their special dynamic charac-
teristics which include a large number of signifi-
cant elastic modes with very small inherent damp-
ing, inaccuracies in the knowledge of system
parameters, nonlinear effects and stringent
maneuver accuracy. The control methods are
related with a multi-input, multi-output (MIMO)
configuration. As a result, it is natural to use an
optimal formulation to design a controller. How-
ever, stringent stability and robustness are
required due to space operations with minimum
energy consumption. In order to satisfy these
have been

requirements, many alporithms
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proposed by employing optimal control, adaptive
control, robust control, etc.

Recently, sliding-mode control has been used
extensively in robotics (Slotine, 1985), in which
state information is readily available. Slotine
proposed the boundary layer concept to reduce
the chattering problem by introducing a linear
function within the switching region. In the appli-
cation of SMC 1o flexible structures, Mostafa and
Oz (1989) investigated a switching mechanism,
stability, intecaction with unmodeled dynamics,
and the chattering problem with general non-
linear systems. They determined that the chatter-
ing issue is not the main obstacle to the applica-
tion of SMC, but the effect of truncated modes
may cause instability in a nonlinear system, in
contrast to a linear system, due to control spil-
lover alone. Young and Ozguner (1993) com-
bined SMC with a frequency weighted optimal
formutation (Gupta, 1980) to reduce the chatter-
ing. Sinha and Miller (1995) proposed an optimal
SMC with Kalman filter to reject stochastic
broadband torque disturbances. However, an
estimator-based tracking SMC has not been ade-
quately addressed. Sung (1997) developed a sto-
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chastic optimal sliding-mode controller
(SOSMC) in conjunction with Kalman filtering
to control the oscillatory deflection of large flex-
ible structures. He investigated closed-loop
dynamics and globally asymptotic stability of the
SOSMC algorithm. Using a two-mass-spring-
damper system, Sung (1999b) investigated an
energy efficient control approach by combining
SMC with the input shaping technique. It was
illustrated that a synthesized trajectory with a
combination of low-frequency mode and rigid-
body mode results in better performance than the
traditional rigid-body trajectory alone.

An objective pursued by the paper is to reduce
residual deflection and to largely slew a flexible
spacecraft by fabricating the SOSMC law, an
elastic tracking model and the input shaping
technigue. The paper is organized as follows. In
the next section, the dynamic equations of a flex-
ible spacecraft are reviewed. Then, a model reduc-
tion is presented for efficient computation and
In the following section,
matrix partition approach is used under the

deflection control.

assumption of measurable rigid-body states to
formulate an elastic tracking model in order to
avoid the control spillover. Lastly, a start-coast-
stop maneuver is proposed as a slewing strategy.
In the numerical simulation, the proposed control
mechanism demonstrates the control efficacy and
satisfies the stringent final antenna error below 0.
02° within the short period of time for the control
objective of the SCOLE.

2. Dynamics of a Flexible Spacecraft

The spacecraft consists of a shuttle carrying an
antenna connected to the shuttle by means of a
mast, as shown in Fig, 1. The shuttle is assumed
to be rigid and the mast and antenna are deforma-
ble. The motion of the spacecraft is referred to a
given reference frame xoyez embedded in the
rigid shuttle. The reference frame has six degrees
of freedom, three rigid-body rotations and three
rigid-body translations. A set of simultaneous
nonlinear ordinary differential equations can be

found in reference (Meirovitch and Quinn,
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Fig. 1 Spacecraft control laboratory experiment

configuration

1987b). They presented a perturbation approach
which consists of separating the equations into a
set of equations for the rigid-body motions, re-
presenting zero-order effects, and a set of egua-
tions for the small elastic motions and deviations
from the rigid-body motions, representing first-
order effects. Their approach permits a4 maneuver
strategy that is independent on the deflection
control. The resulting perturbation equations are
summarized in the following.

The zero-order equations of motion, which
govern the structure as if it were rigid, are shown
to have the expressions

mjéo"‘ Corgnd)o‘i"ﬂ%fﬁ[?’}’d?o

+(I—2§0ﬁUI)CUTSDJ:CgFD (1)
ST cﬂf'e‘uw%’fn%s"o’"cofeo ¥ Iodot @Towo
=M, 2)

where mn, s the mass of the earth and (G is the
universal gravitational constant. /y and M, are
the zero-order perturbed control force and
moment vectors in that order. », ms, and mp are
the masses of the entire spacecraft, the shuttle, and
the mast, respectively, and

Sn:fmsfde‘{‘fmpdeP (3

R, is a unit vector in the direction of B, which is
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the zero-order perturbed term of R. The tilde
over a symbol denotes a skew symmetric matrix
derived from the associated vector. (; and ¢y, are
the perturbed rotation matrix and the perturbed
angular velocity of the frame xoy02 With respect
ta the inertial frame, respectively. f, is the mass
moment of inertia matrix about point 0.

The first-order linear perturbation equations,
which govern perturbations in the rigid-body
motion and the oscillatory deflection of the struc-
ture, are expressed in the matrix form

MEHCot Gl HEK+ Kys)x=F* (4)
where A, Cx G, Ks and K, are mass, damping,

gyroscopic, stiffness and stiffening matrices
respectively.
x"=[R{, 37, q"] (5)
F*Tz [F1T, M1T! QUT+ QlT} (6)

where the first-order perturbed term Ry of B is a
vector measured with respect to axes xyzez. In
order to express all the variables in the perturba-
tion equations in terms of components along the
Toyfozo Axes, small angular displacement g expres-
sed in the body-fixed frame are introduced. g is a
vector of time-dependent generatized coordinates.
&% is the first~order perturbed force lor elastic
displacement. F;, M, and @, are vectors of exter-
nal forces associated with the perturbations in the
rigid-body translations, rigid-body rotations, and
elastic displacements, respectively.

2.1 Reduced state
vectors

The order of the perturbarion equations for the

deflection control is often so large that some

reduction is necessary. In the paper, the elastic

motion can be expanded into a series composed of

premancuver eigenvectors acting as admissible

equation by Krylov

vectors. Note that the premaneuver eigenvectors
can be obtained in a state of equilibrium prior to
the maneuver, which may be characterized by
either rest or steady rotation, The SCOLE model
is reduced by using the frequency dependent
Krylov vectors (FDKYV) (Sung and Park, 1999a)
that demonstrated better dynamic accuracy than
the eigenvectors. The equations of motion trans-

formed by FDKYV are simplified and their number
is significantly smaller than the number of equa-
tions in Eq. (4) even if these admissible vectors
clearly do not decouple the equations of motion.
Using the FDKV, the linear transformation
between physical 17! and Krylov z#*' coordi-
nates can be considered as

x(H)=0Qz(f) (N

where p< un. Hence, the equations of maotion in
Krylov space are as follows:

Mz -H(Cat G 2
H( K+ KN z(H)=Q"F*(D) (8)

where
M=Q™MQ
G=Q"GQ
Ca=QTCal (9
KDZ QTKSQ
K = QTKH.SQ

The reduced equations are called quasi-Krylov
equations of motion} which are used for com-
puter simulation and deflection control.

All these operations with admissible vectors are
guided by the results of a perturbation method
such that the nonlinear terms which are functions
of both rigid-body angular velocity and angular
acceleration, appear in the coefficients of the
system matrices.

The gquasi-Krylov equations of motion of Eq.
{8) could be expressed as a state equation with
stochastic effects:

2()=Az{)+ Bu(H)+ D)+ w(s) (10)

where
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and the control input and state vector are expres-

sed as 2 (/)= F* and z(¢)={Z, Z}7, respectively.
The output equation could bhe expressed as

y()=Cz()+ v($) (11)

where state vector z(f)= R*, sensor noise vector ¢
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(#)=R™, and output vector y({)SR* are expres-
sed. D(#) contains known disturbances which can
be nonlinear time variant functions. Note that the
time variant terms decrease in magnitude and the
equation approaches a decoupled form as the
maneuver velocity decreases.

The plant disturbance vector (f) and the
sensor noise vector p{f) contain independent
white-noise processes with zero mean as their
elements. Their covariance matrices are given as

Elw(H)w(r)]=05(f—1) (12)
Elv(D)u(0)T]=Qnd(t—1) {(13)

where §(#—r) is the Dirac delta function.

2.2 Elastic tracking model

For the linear motion of a control system, an
ideal tracking model is presented to generate
desired elastic states so that the natural deflection
of a system is experienced. The tracking model is
starting with the partition of system matrices.
Since the quasi-Krylov eguations of motion pre-
serves the physical coordinate information, the
reduced equations of motion can be partitioned
into two subsystems, such as a rigid-body sub-
plant and a flexible-body subplant by multiply-
ing the inversion of mass matrix §f to each term
with the exclusion of time-varying matrices of Eq.

(8)
GG elEkle SIE)-E)
25 Cr Corllzy Kor Kped\lZp Iy
{(14)
where the subscripts » and f stand for rigid-body
and flexible-body, respectively. From the left side
of Eq. (14), the second matrix is the partitioned
damping matrix of C,=M>C, and the third
matrix is the partitioned stiffness matrix of K=
M #,. External loads F, and F, are related to
rigid-body and to flexible-body, respectively.
Note that the mass matrix has been simplified to
the identity matrix to conventently cast Eq. (14)
in state space form. The flexible-body, for which
the state estimator is designed with the assump-
tion of the direct measurement of the rigid-body
states, 1s

§f+Cfféf+KffEf=Ff_Ds(Er! gfs ére 2_,")

(13)

where Do(Z,, Zs, Z» 3Z) is considered as a
disturbance term including stiffening, gyroscopic,
and coupled terms. The Eq. (15) could be effi-
ciently used for the flexible-body state estimation
as well as an ideal tracking model.

The tracking model could be obtained from Eq.
(15) by excluding time-varying matrices and
internal forces so that the tracking model pro-
vides ideal elastic states to a controller. It serves
as a nominal linear trajectory for a flexible-body
dynamics. Using the modal analysis of the par-
titioned subplant, the transformation between the
tracking model and the partitioned model is
obtained by

ZA(8)="Tzalt) (16)

where TeR¥-8=%#-9 i5 an set of eigenvectors of
the partitioned model. The tracking model is
expressed as

Z'd(t)+2§'a)nz'd(t)+ wﬁzd(t)
=—uT A0 (17

where A4, is defined as an influence matrix
obtained by the terms of Eq. (15) associated with
& which will be the designed angular acceleration
in numerical evaluation, The ¢ and @, are the
damping coefficient and the natural frequency of
the partitioned subplant, respectively. Hence, the
right hand side {Swigert, 1980) of the Eq. (17) is
accounted for a tangential force associated with
the destred angular displacement. The g is a
scaling factor which can be used in the case of a
high angular velocity maneuver in order to oper-
ate the system within either an elastic range or a
small deflection. The tracking model of Eq. (17)
is employed for the generations of the desired
elustic states and a linear guidance.

3. Start-Coast-Stop Maneuver

In reference (Meirovitch and Quinn, 1987b),
the perturbation method permits the maneuver
strategy to be designed independently of deflec-
tion control. In the rigid-body like maneuver
with the zero-order perturbation, the axis of
rotation is not necessarily a principal axis so that
the each moment along the xpyoz axes of the
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zero—order perturbed moment A, desired to pro-
duce a rigid-body rotation about one axis are
obtained as

Mm:ful‘.?: ) (IS)
M(]Z:]Zlai_[ﬂlglz (19)
M03:[315+[2152 (20)

where @ is the desired angular displacement. The
inertia moments in the above equations are the
elements of J,, the mass moment of inertia, about
the rotational axis. These moments are applied to
the SCOLE to perform the slewing maneuver
with respect to one axis.

For the rest-to-rest roll maneuver, there are
several operational strategies (Farrenkopf, 1979,
Junkins and Turner, 1986, Swigert, 1980) devised
by optimal formulation in order to minimize
either operational time ot fuel, or both of them,
which lead to solutions for two-point boundary
value problems. Instead of the complicated formu-
lation, a simple operation is employed and target-
ed to the reduction of both operational time and
fuel consumption.
Mu=uwut) for roll maneuver around x, axis in
the paper used in conjunction with the input
shaping technique is expressed as

A torque command input

wl 1) = Tumpsin2Qt, § < fy="%

o 2n

uA1)=0, otherwise

where T, is the torque magnitude and Q is the
period of torque input profile. The input profile is
used for start and stop motions. During the coast-
ing period, no additional input is required except
for control input to treat disturbances. The
smooth input profile is selected because the ex-
citation of high frequency modes should be
reduced during the transient period.

In order to accurately arrive at the desired final
angle of the roll maneuver, an analytical solution
for intermediate time interval is needed. By taking
time integration of Eq. (18) with Eq. (21), the
desired coasting angular velocity is given as

3 Tamp f fu Siﬂzto )
Go=Teme (fy_ Sin2h 22)

where §, is the costing angular velocity of §. If
the desired final angle @, is given, the coasting

time interval, tc, can be obtained as

fe=to+ {23)

Gc

4. Numerical Simulation to
SCOLE Model

The finite element model of the SCOLE in Fig.
1 presented by Meirovitch and Quinn (1987b).
The mast supporting the antenna is a steel tube 10
feet (3.048 m) long. The antenna consists of 12
aluminum tubes, each 2 feet (0.6096 m) long,
welded together to form a hexagonal-shaped grid.
The shuttle is simulated by a steel plate of uni-
form thickness with a mass of 13.85 sfugs (202.
1241 Kg,). The material and physical properties
can be found in reference (Meirovitch and Quinn,
1987a). All computations were performed on an
IBM RISC 6000 Workstation. The control sche-
matic diagram is shown in Fig. 2. There are 3
torque and 3 force actuators applied for the
maneuver and control of the shuttle. 3 torque
wheels are mounted at the mast-tip to control
structural deflection, For state estimation, it is
assumed that the @, Ro, and R, of the shuttle can
be measured with respect to the inertial frame
XYZ. The state variables of the mast relative to
Tolo2n are estimated by the Kalman filter using 3
displacement (z, y, and z) and 3 velocity (2, 7,
and 2) sensors mounted at the mast-tip. The
configuration of the actuators and sensors is
collocated at both the shuttle and the mast-tip.

The full-order model, 84 degrees of freedom, is
reduced to 12 degrees of freedom by configuring
two pseudo-actuators at the mast-tip in the r and
¥ directions and two pseudo-sensors at the same
locations and directions as the two actuators in

Moment

']
Equation 2 g shaper % Torase G g

] = J. v

Stochastic rrukl
Woal Tkoking | ) suamgnm. SCOLE

Contrel (SOSMC)
L&

Kaiman Fiter  }

N>

Fig. 2 Schematic control diagram
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Table T Design parameters for controller and estimator

Rigid-body feedback coefficient
Global reaching coefficient
Scaling factor

Influence matrix

Rigid-body weighting
Measurement noise intensity
Open loop torque period

x 1000

v 20

I l

Ae I(k—ﬁ)x(k—ﬁ]

Qp Q8 JLe-BIxtc-8) mejer
Qn Q4 JUe—8IxtE=6) eter
2 4.0 rad/sec

the application of the frequency dependent
Krylov sequence (FDKV)} (Sung and Park,
1999a). The configuration is reflected by the true
locations of actuators and sensors in controlling
the deflection of the mast. The 6 elastic modes of
the 12 mode FDKV model are obtained from the
first 2 vectors with g,=55 rad/sec and the last 4
vectors with ¢g,=10 rad/sec. The damping for-
mula is written as Cy=qM + K where g=#=0.
01 were selected. A more detailed description of
the FDKV algorithm is provided in the reference
{(Sung and Park, 1999a) for the multidimen-
sionality and collocation of actuators and sensors
and the selection of starting vectors.

Initially, the SOSMC (Sung, 1997) was devel-
oped 1o control the oscillatory deflection of a
large flexible structure with the least chattering
effect and the globally asymptotic stability. The
control law is, mainly, composed of the sliding-
mode control and the Kalman filtering to imple-
ment a boundary feedback control. For the flexi-
bility control and the large angle rigid-body
maneuver of a spacecraft, the SOSMC law could
be modified and expressed as

u(f)= _(GCB)_l[GC(A_KfC)Ze(t)
+PSGQZe(t)+IGche(f)+ Gchy(t)
+ Gty — Ge2alt)] (24)

where an attitude error feedback term x(Goz.e(#) 18
introduced to control the shuttle. (7, is a sliding
surface gain matrix. The [X¢) contains known
nonlinear functions which can be obtained from
the mathematical model of the SCOLE. z,.(¢) is
only the rigid-body state error obtained from
Eqgs. (14), (18), (19) and (20). z.(¢)= Z{t)— z.(t)
is the state error where (¢} and z,(#) are esti-
mated state and desired state vectors, respectively.
K is a time-varying Kalman filter gain matrix. A

diagonal matrix P,=p[™™ is selected for a
globally asymptotic sliding surface. Several
design parameters are tabulated in Table 1.

In the numerical simulation, four cases are
compared with respect to the antenna rotations.
The four cases are

1. Tracking Control (a) requires that most
nonideal effects are assumed to be known for the
design of the SOSMC and time-varying Kalman
filter. However, the SOSMC does not include the
time-varying effects such as stiffening and gyros-
copic terms. The SOSMC attempts to follow the
states of the ideal tracking model. The control
efficiency is demonstrated by this case.

2. Tracking Control ¢b) allows the most signif-
icant disturbances in the slewing maneuver to be
dropped in the design of the SOSMC and time-
varying Kalman filter out of the Tracking Con-
trol (a) case. The disturbances are the tangential
and centrifugal forces. The SOSMC again tracks
the states of the ideal tracking model. The robust-
ness of the SOSMC is illustrated by this case.

3. Open-Loop Control in that neither the
SOSMC nor Kalman filter is involved. The input
shaping technique is used to evaluate the perfor-
mance with only two-impulse sequence.

4. Rigid-Body Control in that the ideal track-
ing model is not used. The SOSMC is attempting
to hold the flexible mast like a rigid-body.

In the four cases, the input torque command
Usnapea With the magnitude T.,,=20 # - /b(2.
7651 Kg,+m) in Fig. 3 is shaped by a two-
impulse sequence (Singer, 1989) with respect to
the first mode of the tracking model and then is
applied to the shuttle for a 30° roll maneuver. The
tracking model generates four non-zero states and
matintain the remaining states at zero. The sto-
chastic optimal sliding-mode controller is char-
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Fig. 3 Shaped and unshaped command inputs for
30° roll maneuver
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Fig. 4 Manecuver strategy for 30° roll maneuver

ged with rejecting perturbations during the entire
slewing motion. The desired motion of the shuttle
is shown in Fig. 4 with the maximum velocity
around 6 deg/sec.

The main control objective of the SCOLE
model is to aim the antenna within the certain
tolerance 0.02° in a short time. Hence, a study of
the antenna rotations versus time is of interest.

Figures 5 to 7 illustrate the instantaneous
antenna rotations with respect to ryy02, about the
o ¥ and 2z, axes, respectively. The figures show
the responses produced during the maneuver with
all four of the control techniques. The effect of the
tangential and centrifugal terms in the controller
and estimator in the case of tracking control (b)
shows more angular displacement and takes a
longer time than the one of tracking control (a) to
settle down the oscillatory rotation because the

= sz
==+ rigid—body control )

9 1 2 a L3 L] a H 4

Fig. 5 Antenna rotation about x, during a 30° roll
maneuver

Fig. 6 Antenna rotation about g during a 30° roll
maneuver

Fig. 7 Antenna rotation about z during a 30° roll
maneuver

SOSMC is employing a globally asymptotic rea-
ching technique (Mostafa and Oz, 1989) unlike a
rapid switching technique. Nevertheless, it does
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Fig. 8 Torque control efforts during a 30° roll
maneuver

eventually and quickly damp out the residual
oscillatory rotational deflection of all axes in the
presence of modeling errors in the tracking con-
trol {a) which 1s performed within settling time 0.
25 sec at the target angle 30°, The open-loop case
with input shaping alone can not reach the design
tolerance and shows continuous rolational dis-
placement. The rigid-body maneuver case shows
a lot of rotational displacement during maneuver
and longer settling time than the proposed one.

The measure of economical control effort (.
E.) is defined as

C. E.:[u(tﬁu(z)dz (25)

The actual control effort is obtained by transform.
ing the Krylov space into the physical coordinate
system. [n Figs. 8 and 9, the rigid-body control is
consuming more control energy in reducing the
oscillatory deflection compared to the tracking
control (a). The tracking control (b} requires
more control effort than the two other cases, and
after 6 sec, continuously consumes energy in order
to damp out the residual oscillatory deflection.
The tracking control (a) consumes the least
amount of control effort and accomplishes the 30
® maneuver so that it is desirable for good control
performance to have the precise system modeling.
The conirel effort for the entire system operation
in the tracking control {a) is a small quantity
below 5 (f¢ - {b,)? (0.4781 (Kg, - m)®) which can
be indirectly comparable to the results of Meir-

——  tracking costrol (a))
- -~ trackng control (b 4
LU T rigid—baody control . 1

oz ’

'i ------------- 5
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0006 e v
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[
' i
[
AL IR
¢
L= /
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Fig. 9 Force control efforts during a 30° roll
maneuver

ovitch and Quinn {1987b). They used either dis-
tributed force actuators or [0 discrete force
actuators in controlling the oscillatory deflection
of the mast instead of using torque wheel
actuators ia the paper.

5. Conclusion

For the large slewing maneuver of a flexible
spacecraft, a robust control mechanism was
proposed and evaluated with an application to
the SCOLE by composing the SOSMC, an elastic
tracking model and the command shaping tech-
nique with a start-coast-stop maneuver. In order
to reduce the rotational deflection and perform
efficient operation of the flexible spacecraft, the
SCOLE model i1s reduced by the FDKV algorith-
m to release a computational burden. The
proposed robust control approach was shown to
be more energy efficient than the rigid-body
motion maneuver’'s. The control robustness was
demonstrated by neglecting the most significant
disturbances without instability issues. As a
result, the large slewing maneuver is successfully
accomplished without significant residual
rotational deflection in a relatively short period
of time when pointing the antenna to a different
target in a space environment.
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