• Title/Summary/Keyword: Stone analysis

Search Result 774, Processing Time 0.027 seconds

Bearing capacity analysis of stone column in soft clay soils (연약점토 지반에 있는 STONE COLUMN의 지지력 산정)

  • 이윤주
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.141-148
    • /
    • 1996
  • Use of stone column for deep ground treatment in soft clay soils is an effective method. The stone column significantly increases load carrying capacity of the soft clay soil. A analysis method for bearing capacity of stone column in soft clay soil is developed. The capacity made by developed method are compared wity observed values from field load test and a reasonable correlation is noted.

  • PDF

Supply Trends and Regional Distribution Analysis of the Domestic Natural Stone Industry in Korea (국내 천연석재 산업의 수급 동향과 지역별 유통분석)

  • Jin-Young Lee;Sei Sun Hong;Kun-Ki Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.431-447
    • /
    • 2024
  • This study aims to analyze the supply and demand trends and regional distribution characteristics of the stone industry through transaction records of the domestic natural stone market. The demand for natural stone is increasing globally, but domestic stone producers are facing financial difficulties due to the influx of low-cost stone, and the government is implementing various support policies, such as mandating the use of domestic stone. However, the influx of low-cost stones has led to management deterioration for domestic stone producers, prompting the government to implement various support policies such as mandating the use of domestic stones. An analysis of the natural stone transaction records from the Public Procurement Service revealed that granite was the main type of rock. The main trading items were natural stone curbs and natural stone slabs, with an average annual transaction amount of approximately 312.8 billion KRW from 2017 to 2021. A comparison of the stone distribution status between the metropolitan area and non-metropolitan areas showed that the metropolitan area had high demand, while non-metropolitan areas served as major supply sources. Cities such as Pocheon in Gyeonggi-do, Iksan in Jeollabuk-do, and Geochang in Gyeongsangnam-do play important roles as major stone suppliers. Based on these results, this study proposes fostering the stone industry tailored to regional characteristics, diversifying distribution channels, and establishing a sustainable supply chain for the sustainable development of the stone industry. Additionally, it emphasizes the need for close cooperation and support among the government, industry, and research institutions.

Distinct Element Modelling of Stacked Stone Pagoda for Seismic Response Analysis (지진응답 해석을 위한 적층식 석탑의 개별요소 모델링)

  • Kim, Byeong Hwa;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.345-352
    • /
    • 2018
  • It is inevitable to use the distinct element method in the analysis of structural dynamics for stacked stone pagoda system. However, the experimental verification of analytical results produced by the discrete element method is not sufficient yet, and the theory of distinct element method is not universal in Korea. This study introduces how to model the stacked stone pagoda system using the distinct element method, and draws some considerations in the seismic analysis procedures. First, the rocking mode and sliding mode are locally mixed in the seismic responses. Second, the vertical stiffness and the horizontal stiffness on the friction surface have the greatest influence on the seismic behavior. Third, the complete seismic analysis of stacked stone pagoda system requires a set of the horizontal, vertical, and rotational velocity time histories of the ground. However, earthquake data monitored in Korea are limited to acceleration and velocity signals in some areas.

3D seismic assessment of historical stone arch bridges considering effects of normal-shear directions of stiffness parameters between discrete stone elements

  • Cavuslu, Murat
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.207-227
    • /
    • 2022
  • In general, the interaction conditions between the discrete stones are not taken into account by structural engineers during the modeling and analyzing of historical stone bridges. However, many structural damages in the stone bridges occur due to ignoring the interaction conditions between discrete stones. In this study, it is aimed to examine the seismic behavior of a historical stone bridge by considering the interaction stiffness parameters between stone elements. For this purpose, Tokatli historical stone arch bridge was built in 1179 in Karabük-Turkey, is chosen for three-dimensional (3D) seismic analyses. Firstly, the 3D finite-difference model of the Tokatli stone bridge is created using the FLAC3D software. During the modeling processes, the Burger-Creep material model which was not used to examine the seismic behavior of historical stone bridges in the past is utilized. Furthermore, the free-field and quiet non-reflecting boundary conditions are defined to the lateral and bottom boundaries of the bridge. Thanks to these boundary conditions, earthquake waves do not reflect in the 3D model. After each stone element is modeled separately, stiffness elements are defined between the stone elements. Three situations of the stiffness elements are considered in the seismic analyses; a) for only normal direction b) for only shear direction c) for both normal and shear directions. The earthquake analyses of the bridge are performed for these three different situations of the bridge. The far-fault and near-fault conditions of 1989 Loma Prieta earthquake are taken into account during the earthquake analyses. According to the seismic analysis results, the directions of the stiffness parameters seriously changed the earthquake behavior of the Tokatli bridge. Moreover, the most critical stiffness parameter is determined for seismic analyses of historical stone arch bridges.

3D Image Analysis for Digital Restoration and Structural Stability Evaluation of Stone Cultural Heritage: Five-storied Magoksa Temple Stone Pagoda (석조문화재 디지털복원 및 구조안정성 평가를 위한 3차원 영상분석: 마곡사오층석탑)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2009
  • This study was focused on digital restoration and structural stability evaluation applying 3D scanning system of five-storied Magoksa temple stone pagoda in Gongju. For these, the digital restoration of the pagoda was completed using laser scan data which is measured 16 directions and data processing program of 7 stages. As a result of digital restoration, the overall height and width of stone properties showed a little difference in directions and the width of roof stones appeared very high difference of each floor. The width of pagoda body become smaller to the fifth floor, but gradual decrease rate showed irregular characteristics. Also, as result of 3D image analysis for structural stability evaluation, the displacement occurred toward northwest in second body stone to upper final stone except for central axis of the first body stone which inclines toward southwest. Such 3D image analysis is required quantification of survey method and should be applied to various field such as quantitative damage maps in order to utilize a conservation of stone cultural heritages, continuously.

  • PDF

Study on the Joint Stiffness, Natural Frequency and Damping Ratio of Stone Pagodas in Korea (국내 석탑의 강성, 고유진동수 및 감쇠비에 관한 연구)

  • Lee, Sung-Min;Choi, Hee-Soo;Lee, Ki-Hak;Lee, Chan-Hee;Jo, Young-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2018
  • Following the earthquake that shook the city of Gyeongju, Korea, in 2016, it became apparent that research on the safety of cultural heritages against the seismic hazards is necessary in Korea. Predictions of how historically significant stone pagodas would behave the earthquakes anticipated in near future, which are the subject of this study, is also required. In this study, the dynamic characteristics of 15 cultural heritage designated stone pagodas of Korea were investigated, including natural frequency and damping ratio, and the stiffness of the stone material and its contact area were determined using eigenvalue analysis by assuming the stone pagodas to be multi-degree-of-freedom structures. The results of this study enable the structural modeling of stone pagodas using a finite element analysis program and the method is expected to be useful in assessing the structural safety of stone pagodas against vertical loads as well as lateral forces, including earthquakes. Also, by identifying the dynamic characteristics of the structures, the results of this study can be utilized as a nondestructive testing method to determine the rigidity of cultural heritage structures and to identify inherent problems. The natural frequencies of the Korean stone pagodas were measured to be within 3.5~8.3Hz, excluding cases with distinct natural frequency results, and it was determined that the natural frequencies of the stone pagodas are influenced by various parameters including the height and joint stiffness of the structures.

A Study on the Geogrid Reinforced Stone Column System for Settlement Reduction Effect (침하저감효과를 위한 고강도 지오그리드 보강Stone Column 공법에 관한 연구)

  • Park, Si-Sam;Lee, Hoon-Hyun;Yoo, Chung-Sik;Lee, Dae-Young;Lee, Boo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.838-845
    • /
    • 2006
  • Recently construction work in Korea, demands of favorable condition ground had been increased with industrialization acceleration and economic growth. However, because of limited land space, it was so hard to ensure favorable condition grounds that construction work proceeds until soft ground area on plans of road, railroad and industrial complex. In this case, soft ground improvement was required such as a stone column method. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, evaluates the stone columns reinforced by geogrid for settlement reduction and wide range of application of stone columns. Triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate. Then, 3-dimensional numerical analysis were conducted for application of stone column reinforced by geogrid as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on reinforcing depth change of geogrid.

  • PDF

Seismic analysis and performance for stone pagoda structure under Gyeongju earthquake in Korea

  • Kim, Ho-Soo;Kim, Dong-Kwan;Jeon, Geon-Woo
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.531-549
    • /
    • 2021
  • Analytical models were developed and seismic behaviors were analyzed for a three-story stone pagoda at the Cheollyongsa temple site, which was damaged by the Gyeongju earthquake of 2016. Both finite and discrete element modeling were used and the analysis results were compared to the actual earthquake damage. Vulnerable parts of stone pagoda structure were identified and their seismic behaviors via sliding, rocking, and risk analyses were verified. In finite and discrete element analyses, the 3F main body stone was displaced uniaxially by 60 and 80 mm, respectively, similar to the actual displacement of 90 mm resulting from the earthquake. Considering various input conditions such as uniaxial excitation and soil-structure interaction, as well as seismic components and the distance from the epicenter, both models yielded reasonable and applicable results. The Gyeongju earthquake exhibited extreme short-period characteristics; thus, short-period structures such as stone pagodas were seriously damaged. In addition, we found that sliding occurred in the upper parts because the vertical load was low, but rocking predominated in the lower parts because most structural members were slender. The third-floor main body and roof stones were particularly vulnerable because some damage occurred when the sliding and rocking limits were exceeded. Risk analysis revealed that the probability of collapse was minimal at 0.1 g, but exceeded 80% at above 0.3 g. The collapse risks at an earthquake peak ground acceleration of 0.154 g at the immediate occupancy, life safety, and collapse prevention levels were 90%, 52%, and 6% respectively. When the actual damage was compared with the risk analysis, the stone pagoda retained earthquake-resistant performance at the life safety level.

Assessment of Relapsing Urolithiasis from K43 with Erosive Gastritis (미란성 위염 환자 K43에서 재발성 요로 결석에 관한 연구)

  • 김재웅
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.44-52
    • /
    • 1997
  • Nephrolithiasis is the most common disorder of the urinary tract in hospitalized patients, more frequently increased in 30~50 years of age, more common in males than in females, prior right stone to left side, and than upper ureteral stone is found in cultural country, while lower ureteral stone is increased in uncultural country. Stone components are classified as calcium oxalate, calcium phosphate, magnesium ammonium phosphate, uric acid, cystine, and their mixed stone, respectively. According to the pathophysiology of urinary stones, supersaturation/crystalization of inorganic salt concentration in urine, organic matrix, inhibitor deficiency, and epitaxy theory could be based on the stone formation. Not only hypercalciuria, hyperparathyroidism, hyperoxaluria, hyperuricosuria, and cystinuria, but also renal tubular acidosis, hypervitaminosis D, and peptic ulcer, are significantly associated with nephrolithiasis. In this study upper ureteral stone component were analyzed with chemical analysis, infrared spectrum, and image analyzer from K43 patient wit erosive gastritis. As the results, mixed stone of calcium oxalate dihydrate and calcium phosphate apatite was identified, the values of clinical test in blood and urine maintained normal revels. The relapsing urinary stone from K43 have no correlation between factors for stone formation reported early, also have no evidence for risk from erosive gastritis.

  • PDF

Finite Element Analysis of Engineering Restoration of Dry Stone Wall Foundations (석조문화재 기초부의 공학적 복원을 위한 유한요소법 해석)

  • Kim, Sung-Su;Jung, Young-Hoon;Kim, Soo-Il;Lee, Kwang-Wu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1130-1141
    • /
    • 2010
  • Even though a number of historic structures in Korea need to be repaired, an intensive research on their engineering performance has rarely been investigated. Herein, we attempted to provide a methodological approach via the explicit finite element analysis to investigate geotechnical aspect of the performance of the dry-stone wall structures. To do so, we summarized relevant literature on the world-wide historic stone structures as well as its analysis in terms of modern geotechnical engineering. The method of the explicit finite element analysis has been briefly summarized. The numerical results on an idealized block structure show that the displacement of blocks and the distribution of earth pressure is different from the conventional theory of the retaining wall because of the discrete nature of the dry-stone wall structure.

  • PDF