• Title/Summary/Keyword: Stone Pagoda

Search Result 239, Processing Time 0.031 seconds

Resistivity Survey on Stylobate of Five-story Stone Pagoda in Tamni-ri, Uiseong (의성 탑리리 오층석탑 기단부 전기비저항 탐사)

  • Oh, Hyundok;Kwon, Moonhee
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.4
    • /
    • pp.253-260
    • /
    • 2020
  • The five-story stone pagoda in Tamni-ri located in Uiseong County in Gyeongsangbuk-do had an unstable upper structure, and the structural deformation of the foundation stone and the stylobate was severe. In order to repair the base of the pagoda, it must be confirmed if there are support stones inside the base. Resistivity survey was performed to study the inner base stone structure during the repair work. The stylobate was exposed soil and broken stones after removing the walls and the cover of the stylobate. Modified pole-dipole array II was used for the resistivity survey, and compared with the typical pole-dipole array method. And in this study, a physical scale-down model experiment was performed to compare and analyze distortions caused by severe topographical undulations such as right-angled lines. The results show that the stylobate of Five-story Stone Pagoda in Tamni-ri Uiseong has base stones inside the reinforced filling soil and are located beneath the pillar of the body and supporting the pagoda.

Geochemical Behavior and Occurrence of Surface Oxidized Materials on the Stone Cultural Heritage: Iksan Mireuksaji Stone Pagoda (석조문화재 표면 산화물의 산출상태와 지구화학적 거동: 익산 미륵사지 석탑)

  • Lee, Dong-Sik;Lee, Chan-Hee;Yang, Hee-Jae;Choi, Ki-Young
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.375-387
    • /
    • 2007
  • The Iksan Mireuksaji stone pagoda, designated as national treasure No. 11 in Korea, has been in the process of disassembling for reconstruction as part of the cultural heritage conservation program. The pagoda is mainly consisting of granite, which is relatively resistant to weathering. However, it has lost its original rock color due to various contaminants deposited at the surface since it exposed to the atmospheric environment long time. In this research, we categorized the secondary inorganic contaminants into the genetic type, and also quantitatively examined occurrences and types of pollutants in the oxidation area of the pagoda surface in which the area is clearly distinguished by naked eyes. Geochemical behavior of soluble pollutants through reaction experiments are demonstrated, and effective methods of cleaning for the conservation and scientific applicability of the surface cleaner are also studied.

Assessment Factors for Seismic Performance of Multi-block Stone Pagodas (적층 석탑의 내진성능 평가요소)

  • Kim, Namhee;Koo, In Yeong;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • Recent earthquakes in Korea caused some damages to stone pagodas and thereby awakened the importance of earthquake preparedness. Korean stone pagodas which have been built with very creative style of material use and construction method are worthy of world heritage. Each stone pagoda consists of three parts: top; body; and base. However each tower is uniquely defined by its own features, which makes it more difficult to generalize the seismic assessment method for stone pagodas. This study has focused on qualitative preliminary evaluation of stone pagodas that enables us to compare the relative seismic performance across major aspects among many various Korean pagodas. Specifically an analytical model for multi-block stone pagodas is to be proposed upon the investigation of structural characteristics of stone pagoda and their dynamic behavior. A strategy for seismic evaluation of heritage stone pagodas is to be established and major evaluation factors appropriate for the qualitative evaluation are identified. The evaluation factors for overall seismic resisting behavior of stone pagodas are selected based on the dynamic motions of a rigid block and its limit state. Numerical simulation analysis using discrete element method is performed to analyze the sensitivity of each factor to earthquake and discuss some effects on seismic performance.

Studies on Damage Characteristics of Gyeongju Bunhwangsa Stone Brick Pagoda (경주 분황사 모전석탑의 손상 특성 연구)

  • Do, Jin Young;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.149-159
    • /
    • 2018
  • The Gyeongju Bunhwangsa Stone Brick Pagoda, which was built with bricks of andesite, is the oldest brick stone pagoda of Silla period. The damage patterns in the stone pagoda are pollutants such as white crust, black crust, discoloration, soil adsorption, and microorganisms, and repair materials. The damage pattern of structural factors in the Stone Brick Pagoda is a bulging phenomenon. According to the X-ray diffraction analysis, white crust are mainly consist of calcite ($CaCO_3$) and thermonatrite ($Na_2CO_3{\cdot}H_2O$) that evaporite finds in nature. Damage pattern varies depending on location of stone pagoda. The pollutants are first story body of pagoda. The microorganisms are confirmed at base, lion statues, first and second story capstone, and repair materials observed at base. The bulging phenomenon appeared on the first story body of the pagoda. Occupancy rates by damage type were higher in the order of microorganisms, pollutants, repair material, bulging phenomenon, and peeling. The highest percentage of individual damage patterns were black microorganisms (39.3%), followed by lichen (17.9%), discoloration (8.0%), white crust (5.5%), cement mortar (5.1%) and peeling (3.1%).

Weathering Impact for Rock Properties and Material Characteristics of Concretes Used Stone Pagoda of the Mireuksaji Temple Site, Iksan, Korea (익산 미륵사지 석탑에 사용된 콘크리트의 재료학적 특성과 석재의 풍화에 미치는 영향)

  • Lee Dong-Sik;Lee Chan-Hee;Kim Ji-Young
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.285-299
    • /
    • 2006
  • The Mireuksaji stone pagoda in Iksan is the largest stone pagoda existing in Eastern Asia. It was assumed that originally it had been established in the shape of nine-storied pagoda but as time went by only six-storied pagoda remained partially due to collapsing, repair and reconstruction. According to the reference, we can't make sure when its modification happened. The form that the pagoda is having now, was modified with concrete by the Japanese during the 1910s. The materials mixed in concrete were mixture of Portland cement, all sorts of stone, sand, and a little bit of new building stone, additive and compound. And also these materials were applied to cultural assets without any experiment at the time of 1910s as maintenance, which are still used recently. To prevent the change of its shape, the west side, south side and the north side which is partially destructed was rebuilt and reinforced with concrete and some of the deformed parts were also filled. The amounts of concrete used were about 200 tons. Such method had prevented the pagoda from destructing, however, by choosing a wrong repair method, its surface of the stone has secondary contaminants and precipitation caused by concrete. This kind of contamination speeds up the weathering which accelerates the aging mechanism of the stone to make it even harder to revive the absence of historical nature. Therefore, we are to find the best cleaning method to remove the secondary hazard contaminants.

A Study on the Characteristics and the Growth Mechanism of Surface Cracks from the Naksansa Seven-Storied Stone Pagoda, Korea (낙산사 칠층석탑에 발달한 표면균열의 특성과 성장 메커니즘)

  • Park, Sung-chul;Kim, Jae-hwan;Jwa, Yong-joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.136-149
    • /
    • 2013
  • We studied the characteristics and the growth mechanism of surface cracks from the Naksansa seven-storied stone pagoda(Treasure No. 499). The pagoda is composed of both medium-grained, porphyritic biotite granite and hornblende-biotite granite. Alkali feldspar megacrysts are easily found as phenocrysts in the rocks. Surface cracks intensely developed at the lower part of the stone pagoda, and their directions are of vertical, horizontal, and diagonal. The rocks of the pagoda have intrinsic microcracks which can be defined as rift and grain rock cleavages. Both rock cleavages seems likely to have led to the crack growth and consequently to the mechanical deterioration of the pagoda. The vertical cracks developed parallel to the vertical compressive stress, whereas horizontal ones formed by tensile strength normal to the vertical compression. In addition mineral cleavages and twin planes of alkali feldspar phenocrysts seems to have been closely related to the mechanical breakdown of the rocks in the NE part of the pagoda.

Tracking the History of the Three-story Stone Pagoda from the Goseonsa Temple Site in Gyeongju throughan Analysis of Component (부재 해석을 통한 경주 고선사지 삼층석탑의 연혁 추적)

  • Jeon, Hyo Soo
    • Conservation Science in Museum
    • /
    • v.21
    • /
    • pp.41-52
    • /
    • 2019
  • The findings of a 2017 safety inspection of the Three-story Pagoda from the Goseonsa Temple site in Gyeongju suggested the possibility that the stone for the second story of the pagoda may have been rotated after the pagoda was disassembled for removal from its original site in 1975. The materials from the pagoda were investigated using photographs and other relevant data from both the Japanese colonial period and from around 1975. The analysis found that the materials of the pagoda were not changed after analleged reconstruction in 1943, but that during the process of relocating the pagoda in 1975 the body of the second story was indeed rotated counter clockwise by 90 degrees and one of the four stone elements making up the first-story roof was exchanged with a part from the second-story roof. In order to discover whether the materials had been incorrectly placed, each part of the pagoda was precisely measured and the elements of the roofs were virtually reconstructed using 3D scanning data. The investigation did not find any singularities with in the components of each roof; the four part sof the first-story roof were 75 to 76 centimeters thick and those for the second-story roof were 78 to 79 centimeters thick. The connections between each part of the roofs also appeared natural. This seems to indicate that there was indeed an undocumented repair of the pagoda at some point between its creation and 1943 and an error that took place during this repair was corrected in 1975. In addition, the study suggested a possibility that the body of the second story was rotated counter clockwised to a change in the locations of parts of the two roofs.

Consideration on how to build on AndongJotap-ri five-story brick pagoda using the building methodology of a stone pagoda between the 7th~9th century (7~9세기 석탑조영방법을 통해 본 안동 조탑리 오층전탑의 조영방법 고찰)

  • Kim, Sang-Gu;Lee, Jeong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.744-754
    • /
    • 2015
  • Buddhist temple construction at East Asia is considered one of the most important architecture activities together with the capital city and palace, where the pagoda is positioned at the center of a Buddhist temple as the most important element of Buddhist architecture enshrining Buddha's Sary. Accordingly, this study was performed to examine the procedure of how to build brick pagodas through the stone pagoda's internal structure between $7^{th}{\sim}9^{th}$ century while disassembling and repairing Andong Jotap-ri five-story brick pagoda. As a result, as the brick pagoda destruction phenomenon, there was a slip phenomenon by side forces, member's plastic temperature, and mixed material differences. Second, like a stone pagoda, brick pagoda is classified and constructed by the design and structural parts. According to the analysis, the design part is formed by the most edge brick, and the structure part places stone material at the buffer zone in the design brick from most edge brick and intra-center, i.e., at the space to support a side force while the top weight is vertically led. When building a brick pagoda, putting a wood pole at inside center plays the role as holding parts. In addition, the center axis is connected to the bottom of the steel pole hole, A steel pole hole has holes to safely settle down and decide the position. Because of them, the steel pole is self-loaded, which may be installed by wood rather than immovable steel.

Studies on Elemental Carbon and Its Origin in Black Surface Layer on Stone Pagoda in Urban Environments (도심에 위치한 석탑 표면 흑색층 내의 원소탄소성분과 그 기원연구)

  • Do, Jin-Young
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.55-65
    • /
    • 2007
  • Black surface layers collected from stone pagodas were analyzed to study the effects of carbon compounds on the blackening of stone surface layer. The total amounts of carbon was measured through elemental analyser. Organic and elemental carbon were measured by combustion ihrornatographic $CO_2$ determination after elimination of carbonates carbon with acid treatment. The elemental carbon concentration in the black surface layer measured 0.52wt.%. This value is not sufficient to explain the complete blackening of stone surface. To trace the origin of carbon in black surface layer on the stone pagoda, aerosol samples for PM 10 were collected at the near sites of the pagoda. The major components of them were soluble ions(42.8wt.%), carbon(38.4 wt.%) and crustal matter(16wt.%). From the high content(13wt.%) of elemental carbon in aerosol ran be deduced that it may be a prime origin for the elemental carbon in the black surface layer on the stone pagoda. The crustal matter in aerosol can be also a origin of silicate mineral in black surface layer and plays a important role in the darkening of black surface layer.

  • PDF

Computational Analysis of the Jinjeonsaji Three-Storied Stone Pagoda through the Finite Element Method (유한요소법을 이용한 진전사지 삼층석탑의 전산해석)

  • Kim, Kyun-Ho;Chung, Jae-Ung
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.213-221
    • /
    • 2008
  • In order to examine the safety of stone-built historic properties, it is necessary to apply different methods to the properties according to their categories, respectively. However, there is no consensus for the criteria on which item should be examined. To make systematic preservation plans for the historic stone buildings, it must be requested to consider various factors such as weights, structural imperfections, and natural disasters and so on. In this paper, the Jinjeonsaji three-storied stone pagoda were numerically analyzed through the finite element method to measure its weight and slope. In addition, it was studied how slope variations of the stone pagoda affect to the deflections and stresses caused by its weight. Finally, criterions were proposed to examine the safety of the stone pagoda.