• Title/Summary/Keyword: Stomatal conductance

Search Result 215, Processing Time 0.025 seconds

Evaluation of Growth Characteristics and Groundwater Levels for the Growth and Development of Sorghum (Sorghum bicolor L.) and Adzuki bean(Vigna anaularis L.)

  • Ryu, Hee-La;Adhikari, Arjun;Kang, Sang-Mo;Kim, Yoon-Ha;Lee, In-Jung
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.13-25
    • /
    • 2018
  • Appropriate water level is the primary factor for the optimal yield of crop plants. The required water level varies according to the variety of the crops. In the present study, we investigated the optimum requirement of groundwater level(GWL) to grow sorghum and adzuki bean under paddy field soil. Here, we cultivated sorghum and adzuki bean using lysimeter filled with paddy soil under GWL 0 cm(NT) and GWL(20, 40 cm) where GWL 20 cm is maintained as a waterlogging condition. The plant growth promoting attributes were measured on the first day after treatment(0 DAT), 10 DAT and 20 DAT. The results showed that the growth parameter such as shoot length, leaf length, leaf width, and stem thickness of both sorghum and adzuki bean were constantly increased and were found higher at GWL 40 cm(except stem thickness and leaf width in sorghum at 20 DAT). The physiological parameters such as chlorophyll content and stomatal conductance were also found higher at GWL 40 cm in all DAT. In addition, the elements like P and K contents in adzuki bean, and Ca content in sorghum were constantly increased and was found higher in GWL 40 cm at all DAT. These results suggest that the GWL of 40 cm is appropriate for production of sorghum and adzuki bean especially in case of paddy soil.

Ecophysiological characteristics of Rosa rugosa under different environmental factors

  • Young-Been Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.85-102
    • /
    • 2023
  • Background: Ecophysiological characteristics of Rosa rugosa were analyzed under different environmental factors from May to October 2022. Photosynthesis, chlorophyll fluorescence, chlorophyll content, leaf water content (LWC), osmolality, carbohydrate content, and total ion content were measured to compare the physiological characteristics of R. rugosa at two study sites (i.e., in large pots and in the Goraebul coastal sand dune area). Results: When R. rugosa was exposed to high temperatures, photosynthetic parameters including net photosynthetic rate (PN) and stomatal conductance (gs) in both experiment areas declined. In addition, severe photoinhibition occurs when R. rugosa is continuously exposed to high photosynthetically active radiation (PAR), and because of this, relatively low Y(II) (i.e., the quantum yield of photochemical energy conversion in photosystem II [PSII]) and high Y(NO) (i.e., the quantum yield of non-regulated, non-photochemical energy loss in PSII) in the R. rugosa of the pot were observed. As the high Y(NPQ) (i.e., the quantum yield of regulated non-photochemical energy loss in PSII) of R. rugosa in the coastal sand dune, they dissipated the excessed photon energy through the non-photochemical quenching (NPQ) mechanism when they were exposed to relatively low PAR and low temperature. Rosa rugosa in the coastal sand dune has higher chlorophyll a and carotenoid content. The high chlorophyll a + b and low chlorophyll a/b ratios seemed to optimize light absorption in response to low PAR. High carotenoid content played an important role in NPQ. As a part of the osmotic regulation in response to low LWCs, R. rugosa exposed to high temperatures and continuously high PAR used soluble carbohydrates and ions to maintain high osmolality. Conclusions: We found that Fv/Fm was lower in the potted plants than in the coastal sand dune plants, indicating the vulnerability of R. rugosa to high temperatures and PAR levels. We expect that the suitable habitat range for R. rugosa will shrink and move to north under climate change conditions.

Differences on Growth, Photosynthesis and Pigment Contents of Open-pollinated Pinus densiflora Families Under Elevated Temperature and Drought (온도 증가와 건조 스트레스에 따른 소나무 풍매차대묘의 가계간 생장, 광합성 및 광색소 함량 차이)

  • Kim, Gil Nam;Han, Sim-Hee;Park, Gwan Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The impacts of high temperature and drought were studied on the seedlings of three families (superiorgangwon74, intermediate-gangwon77 and inferior-gangwon132) of P. densiflora which had been selected by the based on the growth indexes of 32-year-old. The seedlings were grown in controlled-environment growth chambers with combinations of four temperatures ($-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$ $+6^{\circ}C$; based on the monthly average for 30 years in Korea) and two water conditions (control, drought). The growth performance, photosynthetic parameters and photosynthetic pigment contents were measured at every 30 days under four temperatures and drought condition, and the end of each treatment. The superior family showed higher relative diameter at root collar growth rate and the dry weight than intermediate and inferior family in all treatments. Under elevated temperature and drought condition, growth rate was decreased, and seedlings showed lower growth rate than that of control in three families under low temperature. Photosynthetic rate, stomatal conductance and transpiration rate of three families decreased with the increase of temperature and drought condition, and that of seedlings under low temperature was lower than control. But under elevated temperature and drought condition, water use efficiency increased in three families. Photosynthetic pigment contents of leaves decreased under the increase of temperature and drought condition, but chlorophyll a/b ratio increased with the increase of temperature and drought condition in three families. The superior family showed higher total chlorophyll content than intermediate and inferior family in all treatments. In conclusion, P. densiflora is under changed temperature and drought condition, growth was decreased, seedlings more affected in elevated temperature than that of decreased temperature. The increase in monthly average temperature in Korea of more than $6^{\circ}C$, P. densiflora seedling growth in depending on region may decrease. In this study, the superior family(gangwon74) showed more excellent growth and physiological responses than intermediate (gangwon77) and inferior(gangwon132) family under changes temperature and drought.

Growth and Physiological Adaptations of Tomato Plants (Lycopersicon esculentum Mill) in Response to Water Scarcity in Soil (토양 수분 결핍에 따른 토마토의 생육과 생리적응)

  • Hwang, Seung-Mi;Kwon, Taek-Ryun;Doh, Eun-Soo;Park, Me-Hea
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.266-274
    • /
    • 2010
  • This study aim to investigate fundamentally the growth and physiological responses of tomato plants in responses to two different levels of water deficit, a weak drought stress (-25 kPa) and a severe drought stress (-100 kPa) in soil. The two levels of water deficit were maintained using a micro-irrigation system consisted of soil sensors for the real-time monitoring of soil water content and irrigation modules in a greenhouse experiment. Soil water contents were fluctuated throughout the 30 days treatment period but differed between the two treatments with the average -47 kPa in -25 kPa set treatment and the -119 kPa in -100 kPa set treatment. There were significant differences in plant height between the two different soil water statuses in plant height without differences of the number of nodes. The plants grown in the severe water-deficit treatment had greater accumulation of biomass than the plants in the weak water-deficit treatment. The severe water-deficit treatment (-119 kPa) also induced greater leaf area and leaf dry weight of the plants than the weak water-deficit treatment did, even though there was no difference in leaf area per unit dry weight. These results of growth parameters tested in this study indicate that the severe drought could cause an adaptation of tomato plants to the drought stress with the enhancement of biomass and leaf expansion without changes of leaf thickness. Greater relative water content of leaves and lower osmotic potential of sap expressed from turgid leaves were recorded in the severe water deficit treatment than in the weak water deficit treatment. This finding also postulated physiological adaptation to be better water status under drought stress. The drought imposition affected significantly on photosynthesis, water use efficiency and stomatal conductance of tomato plants. The severe water-deficit treatment increased PSII activities and water use efficiency, but decreased stomatal conductance than the weak water-deficit treatment. However, there were no differences between the two treatments in total photosynthetic capacity. Finally, there were no differences in the number and biomass of fruits. These results suggested that tomato plants have an ability to make adaptation to water deficit conditions through changes in leaf morphology, osmotic potentials, and water use efficiency as well as PSII activity. These adaptation responses should be considered in the screening of drought tolerance of tomato plants.

Sensitivity of Five Clones of Populus alba × P. glandulosa Cuttings to Ozone Exposure in Open-Top Chambers in Relation to Their Growth Rates (Open-Top chamber 내(內)에서 오존에 노출(露出)시킨 현사시 5개(個) 클론의 생장량(生長量)과 오존에 대(對)한 민감성(敏感性)과의 관계(關係))

  • Kim, Tae Kyu;Lee, Kyung Joon;Kim, Goon Bo;Koo, Yong Bon
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.105-115
    • /
    • 2000
  • This study was conducted to test a hypothesis that sensitivity of trees to ozone exposure was related to their growth rates. Two cultivars of Populus alba ${\times}$ P. glandulosa with different genetic growth potential were used for the comparison. Two clones(72-30, 72-16) of cultivar No. 4 with fast growing potential and three clones(71-28, 72-27, 72-19) of cultivar No. 2 with slow growing potential were propagated in early spring by cutting in $2-{\ell}$ plastic pots. They were grown outdoor for 5 months and exposed in late August for 30 days to 70 and 130ppb ozone in a open-top chambers(2.5m in diameter and 2m in height). Ozone concentration in a control chamber was maintained below 30ppb by filtering with activated charcoal. Each treatment was replicated twenty times. In a control chamber, cultivar No. 4 grew 73%, 64%, and 38% faster than cultivar No. 2 in leaf weight, root weight, and total dry weight, respectively. Visible injury was observed only in cultivar No. 4 in 130ppb treatment. Ozone treatment at both 70 and 130ppb decreased height growth, dry weight of leaf, root, and entire plants in all five clones. Particularly root growth was reduced by 39.7% and 13.8% in cultivar No. 4 and No. 2, respectively, in 70ppb treatment. Consequently, shoot/root ratio of cultivar No.4 was increased by 63.4%, while that of cultivar No.2 was increased by 22.1%. Stomatal conductance decreased more in cultivar No.4 than in cultivar No.2. Net photosynthesis of cultivar No.4 at 130ppb ozone decreased by 69.5%, while that of cultivar No.2 decreased by 31.5%. Above mentioned physiological responses of two cultivars to ozone strongly suggested that fast growing cultivar No.4 was more sensitive to ozone than slow growing cultivar No.2. It was concluded that sensitivity of trees to ozone exposure was closely related to their growth rates.

  • PDF

Influence of Elevated CO2 and Air Temperature on Photosynthesis, Shoot Growth, and Fruit Quality of 'Fuji'/M.9 Apple Tree (CO2 및 기온 상승이 '후지'/M.9 사과나무의 광합성, 신초생장 및 과실품질에 미치는 영향)

  • Kweon, Hun-Joong;Sagong, Dong-Hoon;Park, Moo-Yong;Song, Yang-Yik;Chung, Kyeong-Ho;Nam, Jong-Chul;Han, Jeom-Hwa;Do, Gyung-Ran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.245-263
    • /
    • 2013
  • This study was conducted to find out the influence of elevated atmospheric $CO_2$ concentrations and air temperature on photosynthesis and fruit quality of 'Fuji'/M.9 apple trees and to investigate these to the effects of climate change during the last four years (2009-2012). The treatments employed were: 'Ambient' (ambient temperature + ambient $CO_2$ concentration); 'High $CO_2$' (ambient temperature + elevated $CO_2$ concentration); 'High Temp'. (elevated temperature + ambient $CO_2$ concentration); and 'High $CO_2$ + High Temp'. (elevated temperature + elevated $CO_2$ concentration). The elevated temperature plots were maintained at $4^{\circ}C$ higher than ambient air temperature, while the elevated $CO_2$ plots were maintained at 700 ${\mu}mol{\cdot}mol^{-1}$. Annual treatment period was applied from end of April to beginning of November for four years. Results showed that elevated $CO_2$ decreased stomatal conductance and leaf SPAD value, but increased photosynthetic rate, intercellular $CO_2$ concentration (Ci), and starch content of mesophyll tissue. In the vegetative growth, elevated temperature increased total number of shoot and total shoot growth per tree, but elevated $CO_2$ decreased average shoot length. In the fruit quality, elevated $CO_2$ increased soluble solid content, fruit red color, and ethylene production. In conclusion, elevated $CO_2$ increased photosynthetic rate of apples during the early growth, but effect of increased photosynthetic rate due to elevated $CO_2$ was decreased during latter growth stage. Elevated temperature, on the other hand, tended to decrease photosynthetic rate of apples during the early growth, but that tended to increase during latter growth stage. Both elevated $CO_2$ and temperature tended to decrease the degree of decreased photosynthetic rate due to each factor.

Effects of Hydrogen Peroxide on Germination and Early Growth of Sorghum (Sorghum bicolor) (과산화수소 처리가 수수의 발아 및 초기 생장에 미치는 효과)

  • Shim, Doobo;Song, Ki Eun;Park, Chan Young;Jeon, Seung Ho;Hwang, Jung Gyu;Kang, Eun-ju;Kim, Jong Cheol;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.140-148
    • /
    • 2018
  • As the global warming causing desertification increase, there is growing concern about damage of crops. It was to investigate how the treatment with hydrogen peroxide before leaf development affects the growth and yield of sorghum for minimizing a damage of crops to drought. The germination experiment was conducted at alternating temperature of $25^{\circ}C/20^{\circ}C$(12 hr/12 hr) under water stress condition of 0 ~ -0.20 MPa adjusted with PEG solution containing 0 and 10 mM $H_2O_2$. In order to know the effect of foliar application of hydrogen peroxide on the growth of sorghum, 10 mM hydrogen peroxide was treated to leaves at 3-leaf stage of sorghum growing in greenhouse conditions. Seed germination rate was increased by 20% in hydrogen peroxide treatment as compared to the Control. under water stress conditions (-0.15 ~ -0.20 MPa). The length of seedlings was also on the rise by the hydrogen peroxide treatment. In the greenhouse pot experiment, the morphological characteristics (plant height, stem diameter, leaf length, and leaf number) and physiological characteristics (chlorophyll content, chlorophyll fluorescence (Fv/Fm), stomatal conductance) were higher in the plants treated with hydrogen peroxide under the drought stress condition than those of plants of $H_2O$ treatment. Experiment conducted with the soil moisture gradient system showed that the foliar application of hydrogen peroxide increased photosynthetic ability of sorghum plant with respect to SPAD value and stomatal conductance and rooting capacity (root weight and root length) under drought condition. Generally, hydrogen peroxide treatment in sorghum increased the tolerance to drought stress and maintained better growth due to ameliorating oxidative stress.

The Effect of Salicylic Acid on $Cd^{2+}$-induced Physiological Toxicity in Commelina communis L. ($Cd^{2+}$에 의한 닭의장풀의 생리적 독성에 salicyclic acid가 미치는 영향)

  • 이준상
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.73-77
    • /
    • 2002
  • The effect of salicylic acid (SA) on C $d^{2+}$ - induced physiological toxicity in Commelina communis was investigated. 3- weeks old Commelina communis was transferred to and grown in Hoagland solution in the presence or absence of 100 $\mu$M C $d^{2+}$ and SA for 3 weeks. In the treatment of C $d^{2+}$ + SA, the length of stem was increased to 0.7 cm for 3 weeks (C $d^{2+}$, 2.1cm; control, 7.2 cm). C $d^{2+}$ + SA reduced total chlorophyll content up to 86%, and changed chlorophyll a/b ratio below 1.6. C $d^{2+}$ + SA also reduced about 40-78% of water potential, but C $d^{2+}$ increased 16-39% from 1 week to 3 weeks. C $d^{2+}$ + SA also inhibited 27% of Fv/Fm, but in case of C $d^{2+}$, Fv/Fm was not changed. The treatment of C $d^{2+}$ + SA showed about 37-58% inhibition of photosynthetic activity when measured at various light intensity (500-1000 $\mu$mol $m^{-2}$ $s^{-1}$ ). In the case of C $d^{2+}$ treatment, photosynthetic activity was inhibited to 12-15%. Similar effect was found in terms of stomatal conductance. Therefore, it could be concluded that the treatment of C $d^{2+}$ + SA into plant decrease or block various physiological activities and lend to die by double effects of both chemicals.cts of both chemicals..

Effects of Elevated Atmospheric CO2 and Nitrogen Fertilization on Growth and Carbon Uptake of Yellow Poplar Seedlings (대기 이산화탄소 증가와 질소 시비가 백합나무 유묘의 생장과 탄소 흡수에 미치는 영향)

  • Chung, Mi-Sook;Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.108-118
    • /
    • 2012
  • To investigate the responses of yellow poplar (Liriodendron tulipifera L.) seedlings to the interactive effects of the elevated atmospheric $CO_2$ level and nitrogen addition, we measured biomass, photosynthetic pigments, photosynthesis, and the contents of nitrogen (N) and carbon (C) from the seedlings after 16 weeks of the treatments. Yellow poplar seedlings were grown under the ambient ($400{\mu}mol\;mol^{-1}$) and the elevated (560 and $720{\mu}mol\;mol^{-1}$) CO2 concentratoins with three different N addition levels (1.2, 2.4, and $3.6g\;kg^{-1}$) in the Open Top Chambers (OTC). The dry weight of the seedlings enhanced with the increased N levels under the elevated $CO_2$ concentrations and the increment of the dry weight differed among the different N levels. Photosynthetic pigment content of the yellow poplar leaves also increased with the increase of the $CO_2$ concentration levels. The effects of the N levels on the photosynthetic pigment content, however, were significantly different among the $CO_2$ levels. Photosynthetic rates were affected by the levels of $CO_2$ and N concentrations. Stomatal conductance and transpiration rates increased with increasing $CO_2$ concentration. The carboxylation efficiency of the seedlings without N addition increased under the higher $CO_2$ concentrations whereas that with N addition decreased under the elevated $CO_2$ concentrations. Nitrogen and carbon uptake in leaf, stem, and root increased with the elevated $CO_2$ concentration level and N addition. In conclusion, under the elevated $CO_2$ concentrations, physiological characteristics and carbon uptake of the yellow poplar seedling were improved and increased with N addition.

Growing Density and Cavity Volume of Container Influence Major Temperate Broad-leaved Tree Species of Physiological Characteristics in Nursery Stage (용기의 생육밀도와 용적에 따른 온대 주요 활엽수의 생리 특성 변화)

  • Cho, Min Seok;Jeong, Jaeyeob;Yang, A-Ram
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.40-53
    • /
    • 2017
  • The purpose of this study was to evaluate the effects of container types on physiological characteristics of Zelkova serrata, Fraxinus rhynchophylla and Quercus serrata in the container nursery stage. We used 16 container types [4 growing densities (100, 144, 196 and $256\;seedlings/m^2$)${\times}4$ cavity volumes (460, 380, 300 and $220cm^3/cavity$)] and performed two-way ANOVA to test the differences in photosynthesis, photochemical efficiency and chlorophyll content among container types. Also, multiple regression analysis was conducted to correlate container dimensions with photosynthetic rate. Container types had a strong influence on photosynthesis of three species seedlings. Growing densities and cavity volumes had a significant interaction effect on photosynthetic rate, water use efficiency, stomatal conductance and chlorophyll contents except stomatal conductance of Q. serrata. In all three species, however, interactions between the two factors of container type were not found with regard to photochemical efficiency. Growing density was negatively correlated with photosynthetic rate of F rhynchophylla and Q. serrata, while cavity volumes positively affected on those of three species seedlings. The range of optimal container types was determined by multiple regression analysis based on photosynthetic rate. Consequently, optimal growing density and cavity volume of container by each tree species were found to be approximately $160{\sim}210\;seedlings/m^2$ and $430{\sim}460cm^3/cavity$ for Z. serrata, $130{\sim}150\;seedlings/m^2$ and $390{\sim}440cm^3/cavity$ for F. rhynchophylla and $130{\sim}170\;seedlings/m2$ and $420{\sim}460cm^3/cavity$ for Q. serrata, respectively. Application of adequate container will induce higher quality seedling production in nursery stage, which will also increase seedling growth in plantation stage.