• Title/Summary/Keyword: Stokes problem

Search Result 222, Processing Time 0.018 seconds

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(1) - Development of Optimization Algorithm and Techniques for Large-Scale and Highly Nonlinear Flow Problem (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(1) - 대용량, 비선헝 유체의 최적화를 위한 알고리즘 및 테크닉의 개발)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.661-669
    • /
    • 2007
  • Eyer since the Prandtl's experiment in 1934 and X-21 airjet test in 1950 both attempting to reduce drag, it was found that controlling the velocities of surface for extremely fast-moving object in the air through suction or injection was highly effective and active method. To obtain the right amount of suction or injection, however, repetitive trial-and error parameter test has been still used up to now. This study started from an attempt to decide optimal amount of suction and injection of incompressible Navier-Stokes by employing optimization techniques. However, optimization with traditional methods are very limited, especially when Reynolds number gets high and many unexpected variables emerges. In earlier study, we have proposed an algorithm to solve this problem by using step by step method in analysis and introducing SQP method in optimization. In this study, we propose more effective and robust algorithm and techniques in solving flow optimization problem.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(2) - Verification of Developed Methodologies and Optimal Active-Control of Flow for Drag Reduction (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(2) - 개발된 기법의 검증 및 드래그 감소를 위한 유체의 최적 액티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.671-680
    • /
    • 2007
  • The objective of this work is to reduce drag on a bluff body within a viscous flow by applying suction or injection of fluid along the surface of the body. In addition to minimizing drag, the optimal solution tends to reduce boundary layer separation and flow recirculation. When discretized by finite elements, the optimal control problem can be posed as a large-scale nonlinearly-constrained optimization problem. The constraints correspond to the discretized form of the Navier-Stokes equations. Unfortunately, solving such large-scale problems directly is essentially intractable. We developed several Sequential Quadratic Programming methods that are tailored to the structure of the control problem. Example problems of laminar flow around an infinite cylinder in two dimensions are solved to demonstrate the methodology. We use these optimal control techniques to study the influence of number of suction/injection holes and location of holes on the resulting optimized flow. We compare the proposed SQP methods against one another, as well as against available methods from the literature, from the point of view of efficiency and robustness. The most efficient of the proposed methods is two orders of magnitude faster than existing methods.

Parallel lProcessing of Pre-conditioned Navier-Stokes Code on the Myrinet and Fast-Ethernet PC Cluster (Myrinet과 Fast-Ethernet PC Cluster에서 예조건화 Navier-Stokes코드의 병렬처리)

  • Lee, G.S.;Kim, M.H.;Choi, J.Y.;Kim, K.S.;Kim, S.L.;Jeung, I.S.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.21-30
    • /
    • 2002
  • A preconditioned Navier-Stokes code was parallelized by the domain decomposition technique, and the accuracy of the parallelized code was verified through a comparison with the result of a sequential code and experimental data. Parallel performance of the code was examined on a Myrinet based PC-cluster and a Fast-Ethernet system. Speed-up ratio was examined as a major performance parameter depending on the number of processor and the network communication topology. In this test, Myrinet system shows a superior parallel performance to the Fast-Ethernet system as was expected. A test for the dependency on problem size also shows that network communication speed in a crucial factor for parallel performance, and the Myrinet based PC-cluster is a plausible candidate for high performance parallel computing system.

An Analytical Solution for Regular Progressive Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.157-167
    • /
    • 2015
  • In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also presented with closed form. In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean's stream function theory is based on the method. In this paper, power series method was considered. The power series method can be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By using the set of equations, the nonlinear wave problem has been solved in this paper.

A STUDY ON THE CHOICE OF THERMAL MODELS IN THE COMPUTATION OF NATURAL CONVECTION WITH THE LATTICE BOLTZMANN METHOD (Lattice Boltzmann 방법을 사용한 자연대류 해석에서 열모델의 선택에 관한 연구)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • A comparative analysis of thermal models in the lattice Boltzmann method(LBM) for the simulation of laminar natural convection in a square cavity is presented. A HYBRID method, in which the thermal equation is solved by the Navier-Stokes equation method while the mass and momentum conservation are resolved by the lattice Boltzmann method, is introduced and its merits are explained. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with a deferred correction method to ensure stability of the solutions. The HYBRID method and the double-population method are applied to the simulation of natural convection in a square cavity and the predicted results are compared with the benchmark solutions given in the literatures. The predicted results are also compared with those by the conventional Navier-Stokes equation method. In general, the present HYBRID method is as accurate as the Navier-Stokes equation method and the double-population method. The HYBRID method shows better convergence and stability than the double-population method. These observations indicate that this HYBRID method is an efficient and economic method for the simulation of incompressible fluid flow and heat transfer problem with the LBM.

Adaptive Triangular Finite Element Method for Compressible Navier - Stokes Flows (삼각형 적응격자 유한요소법을 이용한 압축성 Navier-Stokes 유동의 해석)

  • Im Y. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.88-97
    • /
    • 1996
  • This paper treats an adaptive finite-element method for the viscous compressible flow governed by Navier-Stokes equations in two dimensions. The numerical algorithm is the two-step Taylor-Galerkin mettled using unstructured triangular grids. To increase accuracy and stability, combined moving node method and grid refinement method have been used for grid adaption. Validation of the present algorithm has been made by comparing the present computational results with the existing experimental data and other numerical solutions. Four benchmark problems are solved for demonstration of the present numerical approach. They include a subsonic flow over a flat plate, the Carter flat plate problem, a laminar shock-boundary layer interaction. and finally a laminar flow around NACA0012 airfoil at zero angle of attack and free stream Mach number of 0.85. The results indicates that the present adaptive triangular grid method is accurate and useful for laminar viscous flow calculations.

  • PDF

Internal Wave Generation with Level Set Parallel Finite Element Approach (레블셋 병렬유한요소 기법을 이용한 파랑 내부 조파)

  • Lee, Haegyun;Lee, Nam-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.379-385
    • /
    • 2012
  • Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation of waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the same problem. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problem. The results of numerical simulations are compared with theoretical values and good agreements are observed.

Numerical simulation of the flow in pipes with numerical models

  • Gao, Hongjie;Li, Xinyu;Nezhad, Abdolreza Hooshmandi;Behshad, Amir
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.523-527
    • /
    • 2022
  • The objective of this study is to simulate the flow in pipes with various boundary conditions. Free-pressure fluid model, is used in the pipe based on Navier-Stokes equation. The models are solved by using the numerical method. A problem called "stability of pipes" is used in order to compare frequency and critical fluid velocity. When the initial conditions of problem satisfied the instability conditions, the free-pressure model could accurately predict discontinuities in the solution field. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The results of this paper are analyzed by hyperbolic numerical method. Results show that the level of numerical diffusion in the solution field and the range of well-posedness are two important criteria for selecting the two-fluid models. The solutions for predicting the flow variables is approximately equal to the two-pressure model 2. Therefore, the predicted pressure changes profile in the two-pressure model is more consistent with actual physics. Therefore, in numerical modeling of gas-liquid two-phase flows in the vertical pipe, the present model can be applied.

DEVELOPMENT OF A NUMERICAL TECHNIQUE FOR IMPACT AND SPREADING OF A DROPLET CONTAINING PARTICLES ON THE SOLID SUBSTRATE (미세입자분산 액적의 고체면에서 충돌과 퍼짐현상에 관한 직접수치해석 기법개발)

  • Jeong, Hyun-Jun;Hwang, Wook-Ryol;Kim, Chong-Youp
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.8-13
    • /
    • 2008
  • We present a numerical simulation technique and some preliminary results of the impact and spreading of a droplet containing particles on the solid substrate in 2D. We used the 2nd-order Adams-Bashforth / Crank-Nicholson method to solve the Navier-Stokes equation and employed the level-set method with the continuous surface stress for description of droplet spreading with interfacial tension. The impact velocity has been generated by the instantaneous gravity. The distributed Lagrangian-multipliers method has been combined for the implicit treatment of rigid particles and the discontinuous Galerkin method has been used for the stabilization of the interface advection equation. We investigated the droplet spreading by the inertial force and discussed effects of the presence of particles on the spreading behavior using an example problem. We observed reduced oscillation and spread for the particulate droplet.