• Title/Summary/Keyword: Stoker type incinerator

Search Result 15, Processing Time 0.024 seconds

The Study of Numerical Simulation on the Thermal Flow Performance for the Design of Low Emission Stoker Type Municipal Waste Incinerator (저공해 스토커형 도시폐기물 소각로 설계를 위한 열유동 수치해석 연구)

  • 전영남;송형운;김미환
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.543-551
    • /
    • 2002
  • A Numerical simulation on the thermal flow performance was carried out to propose the incinerator type for the domestic refuses and to investigate the design factor and operating conditions. The SSTI(Standard Stoker Type Incinerator) proposed in this study was modified from the type with central f)ow. It has the characteristics of good mixing between refuse and hot combustion gas in primary combustion chamber and between unburned gas inflowing and secondary air jet in secondary chamber. By predictive results, the SSTI was no recirculation zone in secondary chamber so that mixing time was increased with high residence time. It has good characteristics of combustion and low emission. Parametric screening studies have been understood with phenomenon of combustion in incinerator.

A Numerical Study on the Combustion Characteristics for Stoker Type Incinerator with Various Injection Type of Secondary Air (2차 공기 주입방식에 따른 스토커형 소각로의 연소특성에 관한 수치해석적 연구)

  • Jung, Jin;Kim, Chang-Nyeong;Cho, Young-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.835-842
    • /
    • 2003
  • A three dimensional numerical analysis has been conducted for a stoker type incinerator which has the capacity of 1.5 ton/hr. The objective of the present study is to predict the effects of swirl induced by secondary air and to find an optimal operating condition of the incinerator. In this study, combustion characteristics such as distributions of temperature, velocity and concentration of each species have been examined with various injection types of secondary air and with different flow rates of secondary air in the incinerator. It is found that the secondary air injection on the combustion process makes the path of fluid particle longer in the combustor and enhances the mixing between air and combustion gas by arousing a swirl. Therefore, the injection type of secondary air can be an important key in the design process of incinerator.

The study on the combustion model and combustion characteristics for stoker type incinerator (스토커형 소각로의 연소특성 및 연소 모델에 관한 연구)

  • Kim, Ho-Yeong;Hwang, Ho-Yeong;Jeon, Cheol-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.627-639
    • /
    • 1998
  • A combustion model for the incineration of municipal solid waste(MSW) in the stoker type incinerator was developed by considering the variation of physical composition of MSW. Theoretical analysis and numerical simulation for the combustion characteristics in incinerator were conducted by using the present model and the effects of compositional variation on the incineration characteristics of MSW was examined theoretically. It is found that large excess air enhances drying, but depresses volatilization. For the large value of moisture content, pyrolysis is fast but drying is slow. As the value of plastic content increases, devolatilization becomes slower. Larger amount of primary air supply to the rear side of stoker leads to increase the possibility of delaying the combustion.

The Estimation of Emission Factor of N2O and CH4 by Measurement from Stacks in the Waste Incinerators and Cement Production Plants

  • Choi, Sang-Min;Im, Jong-Kwon;Hong, Ji-Hyoung;Lee, Sue-Been;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.217-226
    • /
    • 2007
  • The purpose of this study is to estimate the emission factor of $non-CO_2$ global warming gases such as $N_2O$ and $CH_4$ by measuring concentrations from stacks of waste incinerators and cement production plants. Based on the established monitoring methods, $N_2O$ concentration measured from stacks in incinerator were between 0.62 and $40.60\;ppm_v$ (ave. $11.50\;ppm_v$). The concentration of $N_2O$ was dependent on the incinerator types. However, the concentrations of $CH_4$ gas were between 2.65 and $5.68\;ppm_v$ (ave. $4.22\;ppm_v$), and did not show the dependency on the incinerator types. In the cement production plant, the concentration ranges of $N_2O$ from the stack were from 6.90 to $10.80\;ppm_v$ (ave. $8.60\;ppm_v$), and $CH_4$ were between 1.80 and $2.20\;ppm_v$ (ave. $2.60\;ppm_v$). Using measured concentrations, the emission amounts of $N_2O$ and $CH_4$ from stacks per year were calculated. The results were is 4.2 ton $N_2O/yr$ in the incinerators, and 53.7 ton $N_2O/yr$ in the cement facilities. The big difference is from the flow rate of flue gas in the cement facilities compared to the incinerators. By the same reason, the $CH_4$ emission amounts in cement plant and incinerator was found to be 339 ton $CO_2/yr$ and 34.1 ton $CO_2/yr$, respectively. Finally, the emission factor of $N_2O$ in the incinerators were calculated using the measured concentration and the amount of incinerated wastes, and was $42.5\sim799.1\;g/ton$ in kiln and stoker type, $11.9\sim79.9\;g/ton$ in stoker type, 90.1 ton/g in rotary kiln type, 174.9 g/ton in fluidized bed type, and 63.8 g/ton in grate type, respectively. Also, the emission factors of $CH_4$ were found to 65.2-91.3 g/ton in kiln/stoker type, 73.9-122 g/ton in stoker type, 109.5 g/ton rotary kiln, and 26.1 g/ton in fluidized bed type. This result indicates that the emission factor in incinerators is strongly dependent on the incinerator types, and matched with result of IPCC (International Panel on Climate Change) guideline.

An Evaluation Study on Combustion and Thermal Flow Characteristics of G+R Type Incinerator (G+R 타입 소각연소로의 연소 및 열유동 특성평가 연구)

  • Shin, Dong-Hoon;Shin, Dong-Hoon;Baek, Ik-Hyun;Jung, Sang-Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.111-117
    • /
    • 2003
  • The present study discusses about the combustion and thermal flow characteristics of a G+R type incinerator, which is under construction for MAPO Incineration system, to evaluate the effects of various operating and design parameters. A bed combustion model is developed to simulate the waste bed combustion on the stoker. The effects of waste composition and primary air distribution are estimated. The results of the waste bed combustion model is applied to CFD(computational fluid dynamics) simulation, which simulates the detail of the thermal flow in the combustion chamber. The effects of bypass damper opening ratio, primary air distribution, and secondary air jet configuration are discussed.

  • PDF

Prediction of Polychlorinated-dibenzofurans (PCDFs) Formation in Municipal Waste Incinerator (도시소각로에서 Polychlorinated-dibenzofurans (PCDFs)의 생성 예측)

  • Ryu, Jae-Yong;Suh, Jeong-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.842-850
    • /
    • 2006
  • The role of chlorination reactions in the formation of polychlorinated dibenzofurans (PCDFs) in a municipal waste incinerator was assessed using a chlorination model for predicting PCDF isomer distributions. Complete distributions of PCDF congeners were obtained from a stoker-type municipal waste incinerator operated under 13 test conditions. Samples were collected from the flue gas prior to the gas cleaning system. While total PCDF yields varied by a factor of five to six, the distributions of congeners were similar. A chlorination model, dependent only on the observed distribution of monochlorinated isomers, was developed to predict the distributions of poly-chlorinated isomers formed by chlorination of dibenzofuran (DF). Agreement between predicted and measured PCDF isomer distributions was high for all homologues, supporting the hypothesis that DF chlorination can play an important role in the formation of PCDF byproducts.

Development of Fuzzy Logic Controller for Automatic Combustion of Refuse Incinerator (쓰레기 소각로 자동 연소를 위한 퍼지 제어기의 개발)

  • Song, Young-Seuk;Park, Jang-Geon;Kim, Yong-Tae;Lee, He-Young;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.123-128
    • /
    • 1996
  • In this paper, a fuzzy controller is proposed for the operation of stoker-type refuse incinerator with many kinds of uncertain factors. To build the exact mathematical model is very difficult because of the variation of physical/chemical properties of refuse as a fuel and the complexity of the combusiton process. The fuzzy controller consists of fuzzy sensor, fuzzy decision maker and tracking part. The rules based on the professional operators empirical knowledge are made for the control of the boiler evaporation rate, emission gas and refuse throughput. For the performance measure of the proposed fuzzy controller, the model of the incinerator is constructed and the simulation results are given.

  • PDF

A Study on Behavior of Heavy Metals during Waste Incineration (폐기물 소각시 중금속 성분의 거동에 관한 연구)

  • 박용이;허철구
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.785-799
    • /
    • 1996
  • The incineration tests of mixed industrial wastes using the stoker type incinerator are carried out to investigate the partitioning characteristics of heavy metals during incineration. The results obtained from this study are as follow. The partitioning characteristics of heavy metals throughout this incinerator are found that, at given condition of $700^{\circ}C$, the elements with the relatively high boiling point such as Cr, Cu and Pb are partitioned into a bottom ash, a fry ash captured tv cyclone, and a flue gas stream, 67~88%, 2~19% and 6~16% of initial amount entering the incinerator, respectively, but the Cd and Hg of 75~81% is vaporized into the flue gas. It appears that the partitioning characteristics according to the particle size of ash is different between the bottom ash and the fly ash. For bottom ash, the fraction of partitioning into 75${\mu}{\textrm}{m}$ oversized particles is reatively high. For fly ash, the characteristics of distributions with the particle size can not be clearly shown.

  • PDF

Study on Co-incineration of Municipal Solid Waste and Organic Sludges (도시쓰레기와 유기성 하수 슬러지 혼합소각에 관한 연구)

  • Jurng, Jong-Soo;Chin, Sung-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.238-244
    • /
    • 2005
  • This study performs the pilot-plant experiments to evaluate the effect of the oxygen enrichment on the co-incineration of municipal solid waste and organic sludge from a wastewater treatment facility. The design capacity of the stoker-type incinerator pilot-plant is 150 kg/h. Combustion chamber temperatures were measured as well as the stack gas concentrations, i.e., NOx, CO, and the residual oxygen. The maximum ratio of organic sludge waste to the total waste input is 30%. Also the oxygen-enriched air with 23% of oxygen in supplied air is used for stable combustion. As the co-incineration ratio of the sludge increased up to 30% of the total waste input, the primary and the secondary combustion chamber temperature was decreased $to900^{\circ}C$ (primary combustion chamber), $750^{\circ}C$(secondary combustion chamber), respectively, approximately $200^{\circ}C$ below the incineration temperature of the domestic waste only (primary: $1,100^{\circ}C$, secondary: $950^{\circ}C$). However, if the supplied air was enriched to 22% oxygen content in air, the incinerator temperature was high enough to burn the waste mixture with 30% sludge, which has the heating value of 1,600 kcal/kg.

  • PDF

Numerical Study of the Post Combustion Chamber of Grate Type Incinerator in Daejon 4th Industrial Complex (대전 4공단 소각로 후연소로 모델 연구)

  • Kim Hey-Suk;Shin Mi-Soo;Jang Dong-Soon;Park Byung-Soo;Um Tae-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.133-138
    • /
    • 2002
  • A 3-D axisymmetric computer program is developed to predict the NO behavior in SNCR system for the stoker incinerator with the waste treatment capacity, 200ton/day. To this end a turbulent reacting flow field calculation is made using proper assumption and empiricism. The stoker bed is assumed to be a homogeneous waste-volatilized gaseous state. The initial composition or reactants are assumed based on the data of the ultimate analysis. Turbulent is resolved by k-e model and turbulent reaction is handled by eddy-breakup model harmonized with empirical chemistry data for gaseous combustion, NO and urea reaction. The liquid droplet is traced by Lagrangian method incorporated by aerodynamic drag, Coriolis and crntrifugal forces. Radiation is treated by sensible heat loss model. Calculation results are in good agreement with experimental data at the outlet of post combustion chamber in Daejon 4th industrial complex. The flue gas shows the temperature range of $900\sim1000^{\circ}C$, velocity of 5m/s and NO concentration of 140ppm at the exit while the measured temperature, flue gas velocity and NO concentration are $967^{\circ}C$, $3\sim4m/s$ and $100\sim200ppm$respectively. Using the developed computer program a parametric study has been made with the variation of heat content of waste, castable length and SNCR variables for the determination of proper injector location. In general, the calculated results are consistent and physically acceptable.

  • PDF