• Title/Summary/Keyword: Stoichiometric model

Search Result 95, Processing Time 0.025 seconds

Individual Reaction Mechanisms and Properties of a DGEBA/DDS Epoxy Resin System (DGEBA/DDS 에폭시수지계의 개별적 반응기구 및 물성)

  • Byung-Gak Min
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.73-76
    • /
    • 1999
  • Near infrared spectroscopy techniques were used to study the cure reactions of epoxy resin system based on diglycidyl ether of bisphenol A(DGEBA) resins cured with 4, 4' diaminodiphenyl sulfone (DDS) hardner. Stoichiometric DGEBA/DDS resin formulation was involved in this study. The infrared absorption spectra of the prepared formulation were obtained on an FTIR spectrometer operating in the region of 11000 to 4000$cm^{-l}$. The chemical group peaks of interest in a DFEBA/DDS spectrum were identified by a comparative study with individual spectra of DGEBA and DDS monomers. Where necessary, special model compounds were used to identify unknown bands, such as the primary amine band at 4535$cm^{-l}$. The absorption bands of interest were integrated to quantify the areas and then converted to molar concentrations. This series of quantitative analyses of the major chemical groups led us to understand not only the reaction mechanism but also the cure kinetics. In this paper, the reaction mechanisms observed in stoichiometric DGEBA/DDS resin formulation and the various properties of the resin system as a function of cure temperature are described.

  • PDF

Ion Transport and High Frequency Dielectric Absorption (이온 전송 및 고주파 유전 흡수)

  • Yun, Ju-Ho;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.379-380
    • /
    • 2008
  • Molecular Dynamics (MD) simulations have been used to model the dynamics of the charge-compensating sodium ions in the non-stoichiometric hollandite Nax$(Ti_{8-x}Cr_x)O_{16}$. These interstitial ions reside in 'tunnels' in the crystal structure and move under the forces of both the ions making up the cage structure and the many body interactions of the other sodium ions in the tunnel. The Velocity Autocorrelation Function (VAF) of the sodium ions is calculated for a range of temperature from 250K to 1000K and converted into the linear ac-conductivity and ac-susceptibility response via Fourier transformation. A peak is found in the conductivity around $6\times10^{12}$ Hz that has some of the character of a Poley absorption. Here it is shown to be due to an harmonically coupled site vibrations of the sodium atoms, which extend only over a limited range. At frequencies below the peak the conductivity tends towards a constant i.e. dc value corresponding to a constant flow of ions through the simulation cell. At high temperatures the conductivity due to this ion transport process behaves like a metal with an insulator to metal transition occurring around a specific temperature.

  • PDF

Stoichiometric Solvent Effect on SN1 Solvolytic Reactivity Accounting for Phenomenon of Maximum Rates in Methanol-Nitromethane Mixtures

  • Ryu, Zoon-Ha;Choi, Su-Han;Lim, Gui-Taek;Sung, Dea-Dong;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1346-1350
    • /
    • 2004
  • Pseudo-first order rate constants $(k_{obs})$ are reported for the following solvolyses in approximately isodielectric mixtures: 3- and 4-methoxybenzyl chloride, bromo- and chlorodiphenylmethane, and 4-chloro-, 4,4'-dichloro and 4-methyl-chlorodiphenylmethane in 0-80% v/v nitromethane-methanol mixtures; and bromo- and chlorodiphenylmethane and 4-methyl-chlorodiphenylmethane in various acetonitrile-methanol mixtures (in the range 0-50% v/v) at$25^{\circ}C.$ These data, and literature data for t-butyl halides (Cl, Br, and I), and for p-methoxybenzoyl chloride, show rate maxima in solvent compositions of ca. 30% aprotic cosolvent, explained by a stoichiometric solvent effect on electrophilic solvation. Linear relationships are observed between $(k_{obs})/[MeOH]^2$ and [AP]/[MeOH], where [AP] refers to the molar concentration of aprotic cosolvent. The results are consistent with competing third order contributions to $k_{obs}$, $k_{MM}[MeOH]^2$ with hydrogen-bonded methanol as electrophile, and $k_{MAP}[MeOH][AP]$ with hydrogen-bonding disrupted by the aprotic solvent.

Prediction of Turbulent Premixed Flamefield in Bunsen Burner (Bunsen Buner 난류 예혼합 화염장의 해석)

  • Cho, Ji-Ho;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.195-199
    • /
    • 2003
  • The stoichiometric methan/air premixed turbulent flames at the axisymmetric Bunsen burner situation are numerically investigated. To account for the chemistry-turbulence interaction in the turbulent premixed flames, the steady laminar flamelet library method has been adopted. The flame front is tracked by using the Level-Set Approach. Turbulence is represented by the ${\kappa}-{\varepsilon}$ modeling with a Pope's correction. The detailed comparison between prediction and measurement has made for the flame field in terms of velocity, turbulent kinetic energy, and normarlized temperature.

  • PDF

Simulation of Combustion Phenomena at Multiple Injection in HSDI Diesel Engine Using Modified Two Dimensional Flamelet Combustion Model (개량된 2 차원 화염편 연소 모델을 이용한 고속 직분식 엔진에서의 다단 분사시 연소 현상 해석)

  • Lim, Jae-Man;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3300-3305
    • /
    • 2007
  • Ignition delay of second injection of HSDI diesel engine was usually much shorter than that of first injection. It is due to the interaction between radicals generated during the combustion process, and mixed gas of second injection. In this paper, To analyze combustion phenomena of multiple injection mode in HSDI diesel engine effectively, two-dimensional flamelet combustion model was modified. To reduce calculation time, two-dimensional flamelet equations were only applied near stoichiometric region. If this region was ignited, species and temperature of other region were changed to the steady-state solutions of one dimensional flamelet equations. By this method calculation time for solving flamelet equations was reduced to 20 percents, thought the results were almost same. Modified flamelet combustion model was coupled to commercial CFD code interactively using user subroutine.

  • PDF

Construction of Map for Transient Condition of a Sl Engine and Refinement of Intake Air Model & Fuel Model (가솔린 엔진의 비정상 상태에 대한 Map 구성과 공기 및 연료 모델 개선)

  • 심연섭;강태성;강승표;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2002
  • For gasoline engines, a three-way catalytic converter that has the maximum efficiency at stoichiometric air/fuel ratio is used to clean up the exhaust gas. So a precise air/fuel ratio control is necessary to maximize the catalytic conversion efficiency, For a transient condition, a fred-forward air/fuel ratio control method that estimates the air mass inducted into a cylinder is being used. In this study, a fuel injection map that makes an accurate air/fuel ratio control possible was constructed for the very same transient condition. For the same condition above, intake air model and fuel model were refined so that fuel injection values based on air mass through a throttle valve and intake manifold pressure are equal to the map values.

Modeling and Analysis of the Air Supply System for Vehicular PEM Fuel Cell (PEM 연료전지 자동차의 급기 시스템의 모델링 및 분석)

  • Jang, Hyuntak;Kang, Esak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.236-246
    • /
    • 2003
  • This paper focuses on developing a model of a PEM fuel cell stack and to integrate it with realistic model of the air supply system for fuel cell vehicle application. The fuel cell system model is realistically and accurately simulated air supply operation and its effect on the system power and efficiency using simulation tool Matlab/Simulink. The Peak performance found at a pressure ratio of 3, and it give a 15mV increase per cell. The limit imposed is a minimum SR(Stoichiometric Ratio) of 2 at low fuel cell load and 2.5 at high fuel cell load.

Design Criterion for the Size of Micro-scale Pt-catalytic Combustor in Respect of Heat Release Rate (열 방출률에 대한 마이크로 백금 촉매 연소기의 치수 설계 기준)

  • Lee, Gwang Goo;Suzuki, Yuji
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • Design criterion for the size of micro Pt-catalytic combustor is investigated in terms of heat release rate. One-dimensional plug flow model is applied to determine the surface reaction constants using the experimental data at stoichiometric butane-air mixture. With these reaction constants, the mass fraction of butane and heat release rate predicted by the plug flow model are in good agreement with the experimental data at the combustor exit. The relationship between the size of micro catalytic combustor and mixture flowrate is introduced in the form of product of two terms-the effect of fuel conversion efficiency, and the effect of chemical reaction rate and mass transfer rate.

Numerical Analysis on the Autoignition of Hydrogen/Air Mixture Near a Hot Surface (고온벽면에 의한 수소-공기 예혼합기체의 자연발화에 관한 수치적 해석)

  • 박은성;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 1992
  • Ignition of hydrogen-air premixed gas in the vicinity of a hot surface has been investigated. Especially multistep reaction model was compared with a single reaction model. It was found that the multistep model with 48 step elementary chemical reactions produced a phenomenologically reasonable trend in ignition delays. The ignition d(2lays increase as the mixture becomes either fuel-rich or fuel-lean with a minimum near the stoichiometric value. The minimum surface temperature has been deduced by extrapolating predicted ignition delays. It was in quite good agreement with the experimental data.

Thermodynamic Assessment of the $ZrO_2-TiO_2$ System

  • Park, Jeong-Ho;Ping Liang;Seifert, Hans-Jurgen;Fritz Aldinger;Koo, Bon-Keup;Kim, Ho-Gi
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.11-15
    • /
    • 2001
  • A thermodynamic assessment for the ZrO$_2$-TiO$_2$ system has been conducted. An optimal thermodynamic data set for this system is evaluated by the CALPHAD(CALculation of PHAse Diagram) method applied to experimental phase diagram and thermodynamic data. The liquid is described by ionic liquid model with two sublattices. The solubilities of the solid phases, tetragonal ZrO$_2$ and TiO$_2$(rutile), were described by subregular substitutional model with one sublattice. Two compounds, ZrTiO$_4$ and ZrTi$_2$O$_6$, are modeled as stoichiometric compounds.

  • PDF