• Title/Summary/Keyword: Stoichiometric model

Search Result 95, Processing Time 0.021 seconds

Kinetics of Methyl Green Fading in the Presence of TX-100, DTAB and SDS

  • Samiey, Babak;Dalvand, Zeinab
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1145-1152
    • /
    • 2013
  • The rate constant of alkaline fading of methyl green ($ME^{2+}$) was measured in the presence of non ionic (TX-100), cationic (DTAB) and anionic (SDS) surfactants. $ME^{2+}$ hydrolyses and fades in neutral water and in this work we search the effects of surfactants on its fading rate. The rate of reaction showed remarkable dependence on the electrical charge of the used surfactants. It was observed that the reaction rate constant decreased in the presence of DTAB and SDS and increased in the presence of TX-100. Binding constants of $ME^{2+}$ to TX-100, DTAB and SDS and the related thermodynamic parameters were obtained by classical (or stoichiometric) model. The results show that binding of $ME^{2+}$ to TX-100 and DTAB are two-region and that of SDS is three-region. Also, the binding constants of $ME^{2+}$ to surfactant molecules in DTAB/TX-100 and SDS/TX-100 mixed solutions and their stoichiometric ratios were obtained.

Dyamic Modeling and Analysis of Air Supply System for Vehicular PEM Fuel Cell (고분자 전해질형 연료전지 자동차의 급기 시스템의 동적 모델링 및 분석)

  • Jang, HyunTak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.175-186
    • /
    • 2004
  • In this paper, we developed the dynamic model of a fuel cell system suitable for controller design and system operation. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the intake manifold filling dynamics, oxygen partial pressures and membrane humidity on the fuel cell voltage. In the simulations, we paid attention to the transient behavior of stack voltage and compressor pressure, stoichiometric ratio. Simulation results are presented to demonstrate the model capability. For load current following, stack voltage dynamic characteristics are plotted to understand the Electro-chemistry involved with the fuel cell system. Compressor pressure and stoichiometric ratio are strongly coupled, and independent parameters may interfere with each other, dynamic response, undershoot and overshoot.

Stoichiometric Effects. Correlation of the Rates of Solvolysis of Isopropenyl Chloroformate

  • Ryu, Zoon-Ha;Lee, Young-Ho;Oh, Yung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1761-1766
    • /
    • 2005
  • Solvolysis rates of isopropenyl chloroformate (3) in water, $D_2O$, $CH_3OD$ and in aqueous methanol, ethanol, 2,2,2-trifluoroethanol (TFE), acetone, 1,4-dioxane as well as TFE-ethanol at 10 ${^{\circ}C}$ are reported. Additional kinetic data for pure water, pure ethanol and 80%(w/w) 2,2,2-trifuoroethanol (T)-water (W) at various temperatures are also reported. These rates show the phenomena of maximum rates in specific solvents (30% (v/v) methanol-water and 20% (v/v) ethanol-water) and, variations in relative rates are small in aqueous alcohols. The kinetic data are analyzed in terms of GW correlations, steric effect, kinetic solvent isotope effects (KSIE), and a third order model based on general base catalysis (GBC). Solvolyses based on predominately stoichiometric solvation effect relative to medium solvation are proceeding in 3 and the results are remarkably similar to those for p-nitrobenzoyl chloride (4) in mechanism and reactivity.

Modified-stoichiometric Model for Describing Hydration of Alkali-Activated Slag (알칼리 활성 슬래그의 수화에 대한 개선된 화학양론적 모델)

  • Abate, Selamu Yihune;Park, Solmoi;Song, Keum-Il;Lee, Bang-Yeon;Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The present study proposes the modified-stoichiometric model for describing hydration of sodium silicate-based alkaliactivated slag(AAS), and compares the results with the thermodynamic modelling-based calculations. The proposed model is based on Chen and Brouwers(2007a) model with updated database as reported in recent studies. In addition, the calculated results for AAS are compared to those for hydrated portland cement. The maximum difference between the proposed model and the thermodynamic calculation for AAS was at most 20%, and the effects of water-to-binder ratio and activator dosages were identically described by both approaches. In particular, the amount of non-evaporable water was within 10% difference, and was in excellent agreement with the experimental results. Nevertheless, notable deviation was observed for the chemical shrinkage, which is largely dependent on the volume of hydrates and pores.

Edge Flame : Why Is It So Hot in Combustion?

  • Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.19-27
    • /
    • 2000
  • A turbulent combustion model, based on edge flame dynamics, is discussed in order to predict global extinction of turbulent flames. The model is applicable to the broken flamelet regime of turbulent combustion, in which global extinction of turbulent flame is achieved by gradual expansion of flame holes. The edge flame dynamics is the key mechanism to describe the flame hole expansion or contraction. For flames with Lewis numbers near unity, there is a $Damk{\ddot{o}}hler$ number, namely the crossover $Damk{\ddot{o}}hler$ number, at which edge flame changes its direction of propagation. The parametric region between the quasi-steady extinction condition and the edge-flame crossover condition is a metastable region, in that flames without edge can stay in their burning states while flames with edge have to retract to expand quenching holes. Using the above properties of edge flame, Hartley and Dold proposed a Lagrangian hole dynamics, which allows us to simulate transient variation of quenching holes. In their model, each stoichiometric surface is subjected to a random sequence of scalar dissipation rate compatible to the equilibrium turbulence. Then, each stoichiometric surface will evolve, according to the combustion map, dependent on the scalar dissipation rate and existence of flame edge, If all the burning surfaces are annihilated, the event can be declared as a global extinction. The consequence obtained from the above model also can be used as a subgrid model to determine local extinction occurring in a calculation grid.

  • PDF

Phenanthrene으로 오염된 불포화토양내에서 오존이동 모델링

  • 정해룡;배기진;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.86-88
    • /
    • 2002
  • The mathematical model was proposed to simulate ozone transport and remediation in unsaturated soils contaminated with phenanthrene. Soil column experiments were also carried out to calibrate the mathematical model. The experimental results successfully matched with the modeling results in various soil conditions. The model proposed nondimensional fraction factor to reveal reactivity between phenanthrene and gas phase ozone and liquid phase ozone. From sensitivity analysis, the fraction factor and stoichiometric coefficient decreased as water content increased. Simulation results showed increased SOM content retarded the ozone transport and the phenanthrene removal due to increased ozone consumption.

  • PDF

Numerical Investigation of Smoke Behavior in Rescue Station for Tunnel Fire (철도터널 화재 시 구난역 내의 연기거동에 대한 수치해석 연구)

  • Hong, Sa-Hoon;Ro, Kyung-Chul;Ryou, Hong-Sun;Lee, Seong-Hyuk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2009
  • The present study deals with numerical investigation for smoke behavior in rescue station by using the commercial CFD code (FLUENT Ver 6.3). With the use of the MVHS(Modify Volumetric Heat Source) model modified from the original VHS(Volumetric Heat Source) model, a 10 MW mode was adopted for simulation and the MVHS model can describe the generation of product and the oxygen consumption at the stoichiometric state. In addition, the present simulation includes the species conservation equations for the materialization of heat source and the estimation of smoke movement. From the results, the smoke flows are moving along the ceiling because of thermal buoyancy force and as time goes, the smoke gradually moves downward at the vicinity of the entrance. Moreover, without using ventilation, it is found that the smoke flows no longer spread across the cross-passages because the pressure in the non-accident tunnel is higher than that in the accident tunnel.

Modeling and Dynamic Simulation for Biological Nutrient Removal in a Sequencing Batch Reactor(I) (연속 회분식 반응조에서 생물학적 영양염류 제거에 대한 모델링 및 동적 시뮬레이션(I))

  • Kim, Dong Han;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.42-55
    • /
    • 1999
  • A mathematical model for biological nutrient removal in a sequencing batch reactor process, which is based on the IAWQ Activated Sludge Model No. 2 with a few modifications, has been developed. Twenty water quality components and twenty three kinetic equations are incorporated in the model. The model is structured in the matrix form based on the law of mass conservation using stoichiometry and kinetic equations. Stoichiometric coefficients and kinetic parameters included in the model equations are chosen from the literature. A multistep predictor-corrector algorithm of variable step-size is adopted for solving the vector nonlinear ordinary differential equations. The simulation for experimental results is conducted to evaluate the validity of the model and to calibrate coefficients and parameters. The simulation using the model well represents the experimental results from laboratory. The mathematical model developed in this study may be utilized for the design and operation of a sequencing batch reactor process under the steady and unsteady-state at various environmental conditions.

  • PDF

Characteristics of Methane Turbulent Lifted Flames in Coflow Jets with Initial Temperature Variation (동축류 제트에서 초기 온도 변화에 따른 메탄 난류 부상화염 특성)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2372-2377
    • /
    • 2007
  • Characteristics of turbulent lifted flames in coflow jets with the varying initial temperature have recently been investigated about only propane case diluted by nitrogen. The investigation has firstly improved a premixed flame model and a large scale mixing model among competing theories on the stabilization mechanism of turbulent flame to be suitable for a high temperature condition. In this research, about methane with good availability to apply for a practical combustor as clean fuel, its characteristics of turbulent nonpremixed flame have been studied experimentally. The results have shown an effectiveness of the premixed flame model and the large scale mixing model considered initial temperature variation. Additionally, considering the axial distance where the mean fuel concentration falls below the stoichiometric level along the center line of the jet according to diluting nitrogen, the premixed flame model have more accurately been improved.

  • PDF

Phase Field Modeling of Graphitization in Ductile Cast Iron by Strip Casting(I);Modeling of Phases with Negligible Solubility (스트립캐스팅한 구상흑연주철 박판의 흑연화 과정에 대한 phase-field 모델링 (I);고용도가 없는 상의 모델링)

  • Kim, Sung-Gyun;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.129-140
    • /
    • 2000
  • This study aims at the phase-field modeling of the phase transformation in graphitization of the cast iron. As the first step, we constructed a phase-field model including the phases with negligible solubility. Under the dilute regular solution approximation, a simplified version of the phase-field model was obtained, which can be used for the phase transformation related with the stoichiometric phases. The results from the numerical calculation of the phase-field model was in good agreement with the exact analytic solution. The compositional shift due to Gibbs-Thomson effect can be reproduced within 0.5% error in the numerical calculation. The interface velocity, whereas, in numerical calculation of phase-field model appeared to be 15% larger than that from the analytic solution. This error is due to the shift of the interface position in phase-field model from the position with ${\phi}=0.5$.

  • PDF