• Title/Summary/Keyword: Stock price movements

Search Result 44, Processing Time 0.025 seconds

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Estimating Exchange Rate Exposure over Various Return Horizons: Focusing on Major Countries in East Asia

  • Lee, Jeong Wook;Ahn, Sunghee;Kang, Sammo
    • East Asian Economic Review
    • /
    • v.20 no.4
    • /
    • pp.469-491
    • /
    • 2016
  • In this paper, we estimate the exchange rate exposure, indicating the effect of exchange rate movements on firm values, for a sample of 1,400 firms in seven East Asian countries. The exposure estimates based on various exchange rate variables, return horizons and a control variable are compared. A key result from our analysis is that the long term effect of exchange rate movements on firm values is greater than the short term effect. And we find very similar results from using other exchange rate variables such as the U.S. dollar exchange rate, etc. Second, we add exchange rate volatility as a control variable and find that the extent of exposure is not much changed. Third, we examine the changes in exposure to exchange rate volatility with an increase in return horizon. Consequently the ratio of firms with significant exposures increases with the return horizons. Interestingly, the increase of exposure with the return horizons is faster for exposure to volatility than for exposure to exchange rate itself. Taken as a whole, our findings suggest that the socalled "exposure puzzle" may be a matter of the methodology used to measure exposure.

The Prediction and Trading Strategy for Intraday Stock Price Movements: A Deep Learning Approach (딥러닝을 이용한 Intraday 주가 예측 및 매매전략)

  • Hong, Yoonsik;Joo, Changhee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.7-10
    • /
    • 2022
  • 본 연구는 국내 주식의 intraday 가격변화를 딥러닝 모형들로 예측하고 그 예측모형을 이용한 매매전략 딥러닝 모형을 제안한다. 주식의 intraday 가격변화에 따라서, 고빈도 매매, 주문집행문제 (order execution problem), 자동화 매매 등과 같은 intraday 주식 트레이딩의 수익률이 달라지기 때문에, 주식의 intraday 가격변화 예측은 주식 투자에 있어서 중요하다. 해외 시장에 대해서는 인공지능 등을 이용한 intraday 가격변화 예측 연구가 활발히 이루어졌지만, 국내의 경우 관련한 연구가 드물어 그 효용성이 명확히 드러나지 않았었다. 그에 따라서, KOSPI 50의 구성 종목에 대하여 정준의(canonical) 딥러닝 모형들을 적용하여 예측 성능을 비교한다. 또한, 그 예측모형들을 활용하여 간소화된 주문집행문제에서의 매매전략 딥러닝 모형을 제안한다. 그리고, 제안한 매매전략 딥러닝 모형을 KOSPI 50의 구성 종목에 대하여 실험하여, 제안한 방법론이 유효함을 밝힌다. 제시된 모형을 실제 주식 매매에 직접 적용하여 수익성을 개선을 기대할 수 있고, 사람이 직접 거래할지라도 효과적인 보조 지표가 될 수 있기에 본 논문은 실용적 의미를 지닌다.

  • PDF

Model analysis for stock price movements prediction based on technical indicators (기술적 지표 기반의 주가 움직임 예측을 위한 모델 분석)

  • Choi, Jinyoung;Kim, Minkoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.885-888
    • /
    • 2019
  • 다양한 요소에 의해 영향을 받는 주식 시장에서 정확한 분석과 예측은 막대한 수익과 최소 손실을 보장한다. 본 논문은 주가 움직임 예측을 위하여 다양한 기술적 지표로부터 적합한 특징을 선택하고 세 가지 분류 알고리즘 LSTM, SVM, MLP 을 통해 향후 1, 3, 5, 7, 10, 15, 20, 25, 30 일 후의 주가 움직임을 예측하는 실험을 진행하였다. LSTM 에서 30 일 후를 예측할 때 74.4%의 가장 높은 분류 정확도를 보였으며 전반적으로 LSTM 을 통한 분류가 우수한 결과를 나타냈다.

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

The Dynamics of Intraday Price Transmission Across the Stock Index Futures Markets: The Standard & Poor's 500, the New York Stock Exchange Composite, and the Major Market Index Futures (주가지수선물시장 상호간의 가격정보 전달구조에 관한 연구)

  • Kim, Min-Ho
    • The Korean Journal of Financial Management
    • /
    • v.12 no.2
    • /
    • pp.239-271
    • /
    • 1995
  • 본 연구는 현재 미국에서 거래되고 있는 세 가지 주가지수선물 상호간의 일중(intradaily) 가격선도(price leadership) 관계에 관한 실증분석이다. 본 연구가 기존의 연구와 다른점은, 기존의 연구가 주가지수선물과 그 기준이 되는 현물 가격사이의 가격 선도 관계에 초점을 두고 있는데 반하여 본 연구는 주가지수선물 시장 사이에서 존재하는 가격 선도관계를 분석하고 있다는 점이다. 실증 분석의 대상이 된 주가지수선물들은 Chicago Mercantile Exchange의 Standard and Poor's 500 Index(S&P 500), New York Futures Exchange의 New York Stock Exchange Composit Index (NYSE), 그리고 Chicago Board of Trade의 Major Market Index(MMI)이다. 만약 이들 시장들이 정보의 전달에 있어서 효율적(informationally efficient) 이라면 이들 가격간에 선도-지연(lead-lag) 현상은 존재하지 않을 것이다. 그러나 어느 한 시장이 새로운 정보를 선물가격에 반영하는데 다른 시장에 비해 상대적으로 느리다면, 이들 시장 상호간에는 가격의 전이(transmission)현상이 존재하게 될 것이다. 이들 선물간의 일중 가격선도 관계 연구는 이러한 시장의 효율성 문제를 밝히는데 의의가 있을 뿐만 아니라, 시장간의 단기적 가격 괴리를 이용하려는 차익거래자들에게도 유용하게 쓰일 수 있을 것이다. 본 연구는 위에서 언급한 각각의 주가지수선물들이 가격 선도성을 가질 수 있는 이유와 관련된 다음과 같은 세 가지 가설을 설정하였다. 첫째 가설은, 가격의 선도성은 거래량과 관련이 있다는 것이다. 즉, 이들 주가지수선물 중 가장 거래량이 많은 S&P 500 선물이 다른 선물을 선도할 것이라는 가설이다. 둘째, 가격의 선도성은 주가지수를 구성하는 주식의 수에 비례한다는 가설이다. 다시 말하면, 보다 않은 수로 구성된 주가지수일수록 정보처리 속도가 빠르다는 가설이다. 따라서, 본 연구에 포함된 주가지수선물 중 가장 많은 수의 주식을 대상으로 하는 NYSE 선물이 다른 선물을 선도할 것이다. 마지막 가설은 정보의 처리는 대형주 혹은 기관선호주(institutionally-favored)들이 주도한다는 것이다. 따라서, 주로 이와 같은 주식들로 구성 된 MMI 선물이 선도성을 가질 수 있다는 것이다. 위의 가설들을 검증하고 시장간의 가격 선도관계를 분석하기 위하여 본 연구는 vector autoregressive(VAR) 모형을 이용하여 충격-반응 함수(impulse response functions)를 계산하고, 분산분해(variance decomposition)를 수행하였다. 또한 가격 상호간에 존재할지도 모르는 공적분(cointegration)관계를 Johansen(1991)과 Jokansen and Juselius (1992) 등이 제시한 다변량 공적분 검정(multivariate cointegration test)를 통하여 분석하였다. 분석기간은 1986년 1월부터 1990년 7월까지이며, 각 주가지수선물들의 5분 간격 data를 사용하였다. 연구결과, 충격-반응 분석은 어느 한 시장에서의 충격(shock)은 다른 시장으로 매우 빠르게 전달되고 있음을 보여 주었다. 그러나 충격의 지속정도는 그 충격의 진원지에 따라 달랐다. 즉, NYSE나 MMI 선물로부터 발생 한 충격은 다른 시장의 가격에 5분 안에 반영을 끝냈지 만 S&P 500 선물에서 발생한shock은 그 이상 지속되었다. 또한, 분산분해 결과 S&P 500 선물이 자기자신 뿐만 아니라 다른 시장의 예상하지 못했던 움직임(unexpected movements)을 설명하는데 가장 큰 설명력(explanatory power)을 가지고 있었다. 결론적으로 S&P 500 선물이 다른 선물을 약 5분 간격으로 선도하였다. 이는 가격의 선도가 거래량과 밀접한 관계가 있음을 보여 주는 것이다.

  • PDF

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

Performance Analysis of Trading Strategy using Gradient Boosting Machine Learning and Genetic Algorithm

  • Jang, Phil-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.147-155
    • /
    • 2022
  • In this study, we developed a system to dynamically balance a daily stock portfolio and performed trading simulations using gradient boosting and genetic algorithms. We collected various stock market data from stocks listed on the KOSPI and KOSDAQ markets, including investor-specific transaction data. Subsequently, we indexed the data as a preprocessing step, and used feature engineering to modify and generate variables for training. First, we experimentally compared the performance of three popular gradient boosting algorithms in terms of accuracy, precision, recall, and F1-score, including XGBoost, LightGBM, and CatBoost. Based on the results, in a second experiment, we used a LightGBM model trained on the collected data along with genetic algorithms to predict and select stocks with a high daily probability of profit. We also conducted simulations of trading during the period of the testing data to analyze the performance of the proposed approach compared with the KOSPI and KOSDAQ indices in terms of the CAGR (Compound Annual Growth Rate), MDD (Maximum Draw Down), Sharpe ratio, and volatility. The results showed that the proposed strategies outperformed those employed by the Korean stock market in terms of all performance metrics. Moreover, our proposed LightGBM model with a genetic algorithm exhibited competitive performance in predicting stock price movements.

Trading Strategies Using Reinforcement Learning (강화학습을 이용한 트레이딩 전략)

  • Cho, Hyunmin;Shin, Hyun Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.123-130
    • /
    • 2021
  • With the recent developments in computer technology, there has been an increasing interest in the field of machine learning. This also has led to a significant increase in real business cases of machine learning theory in various sectors. In finance, it has been a major challenge to predict the future value of financial products. Since the 1980s, the finance industry has relied on technical and fundamental analysis for this prediction. For future value prediction models using machine learning, model design is of paramount importance to respond to market variables. Therefore, this paper quantitatively predicts the stock price movements of individual stocks listed on the KOSPI market using machine learning techniques; specifically, the reinforcement learning model. The DQN and A2C algorithms proposed by Google Deep Mind in 2013 are used for the reinforcement learning and they are applied to the stock trading strategies. In addition, through experiments, an input value to increase the cumulative profit is selected and its superiority is verified by comparison with comparative algorithms.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.