• 제목/요약/키워드: Stochastic order

검색결과 581건 처리시간 0.025초

A Classification Technique for Panchromatic Imagery Using Independent Component Analysis Feature Extraction

  • Byoun, Seung-Gun;Lee, Ho-Yong;Kim, Min;Lee, Kwae-Hi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.23-28
    • /
    • 2002
  • Among effective feature extraction methods from the small-patched image set, independent component analysis (ICA) is recently well known stochastic manner to find informative basis images. The ICA simultaneously learns both basis images and independent components using high order statistic manners, because that information underlying between pixels are sensitive to high-order statistic models. The topographic ICA model is adapted in our experiment. This paper deals with an unsupervised classification strategies using learned ICA basis images. The experimental result by proposed classification technique shows superior performance than classic texture analysis techniques for the panchromatic KOMPSAT imagery.

  • PDF

Monte Carlo burnup and its uncertainty propagation analyses for VERA depletion benchmarks by McCARD

  • Park, Ho Jin;Lee, Dong Hyuk;Jeon, Byoung Kyu;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1043-1050
    • /
    • 2018
  • For an efficient Monte Carlo (MC) burnup analysis, an accurate high-order depletion scheme to consider the nonlinear flux variation in a coarse burnup-step interval is crucial accompanied with an accurate depletion equation solver. In a Seoul National University MC code, McCARD, the high-order depletion schemes of the quadratic depletion method (QDM) and the linear extrapolation/quadratic interpolation (LEQI) method and a depletion equation solver by the Chebyshev rational approximation method (CRAM) have been newly implemented in addition to the existing constant extrapolation/backward extrapolation (CEBE) method using the matrix exponential method (MEM) solver with substeps. In this paper, the quadratic extrapolation/quadratic interpolation (QEQI) method is proposed as a new high-order depletion scheme. In order to examine the effectiveness of the newly-implemented depletion modules in McCARD, four problems in the VERA depletion benchmarks are solved by CEBE/MEM, CEBE/CRAM, LEQI/MEM, QEQI/MEM, and QDM for gadolinium isotopes. From the comparisons, it is shown that the QEQI/MEM predicts ${k_{inf}}^{\prime}s$ most accurately among the test cases. In addition, statistical uncertainty propagation analyses for a VERA pin cell problem are conducted by the sensitivity and uncertainty and the stochastic sampling methods.

Stochastic thermo-mechanically induced post buckling response of elastically supported nanotube-reinforced composite beam

  • Chaudhari, Virendra Kumar;Shegokar, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • 제4권5호
    • /
    • pp.585-611
    • /
    • 2017
  • This article covenants with the post buckling witticism of carbon nanotube reinforced composite (CNTRC) beam supported with an elastic foundation in thermal atmospheres with arbitrary assumed random system properties. The arbitrary assumed random system properties are be modeled as uncorrelated Gaussian random input variables. Unvaryingly distributed (UD) and functionally graded (FG) distributions of the carbon nanotube are deliberated. The material belongings of CNTRC beam are presumed to be graded in the beam depth way and appraised through a micromechanical exemplary. The basic equations of a CNTRC beam are imitative constructed on a higher order shear deformation beam (HSDT) theory with von-Karman type nonlinearity. The beam is supported by two parameters Pasternak elastic foundation with Winkler cubic nonlinearity. The thermal dominance is involved in the material properties of CNTRC beam is foreseen to be temperature dependent (TD). The first and second order perturbation method (SOPT) and Monte Carlo sampling (MCS) by way of CO nonlinear finite element method (FEM) through direct iterative way are offered to observe the mean, coefficient of variation (COV) and probability distribution function (PDF) of critical post buckling load. Archetypal outcomes are presented for the volume fraction of CNTRC, slenderness ratios, boundary conditions, underpinning parameters, amplitude ratios, temperature reliant and sovereign random material properties with arbitrary system properties. The present defined tactic is corroborated with the results available in the literature and by employing MCS.

하천 오염물질의 모의를 위한 프랙탈 이송확산방정식의 해석적 유도 (The Analytical Derivation of the Fractal Advection-Diffusion Equation for Modeling Solute Transport in Rivers)

  • 김상단;송미영
    • 한국수자원학회논문집
    • /
    • 제37권11호
    • /
    • pp.889-896
    • /
    • 2004
  • 프랙탈 이송확산방정식은 정수 차수의 미분연산자로 구성된 고전적인 이송확산방정식과 비교하여 프랙탈 차수의 미분연산자로 구성된 보다 상위개념의 방정식으로써 정의된다. 지금까지의 프랙탈 이송확산방정식은 추계학적인 기법을 동원하여 푸리에-라플라스 공간에서 주로 해석되었으나, 본 연구에서는 실제 공간에서 유한차분개념을 도입하여 보다 직접적으로 하천에서의 오염물 이송확산에 관한 지배방정식을 유도하였다. 이러한 개념의 유도방법은 프랙탈 차수 및 관련 확산계수의 물리적인 추정에 관한 실마리를 제공할 수 있다. 고전적인 이송확산방정식과는 달리 프랙탈 이송확산방정식은 실제 하천에서 관측되는 오염물의 시간-농도 분포곡선의 왜곡현상과 분포곡선의 전후방부 농도를 보다 실제에 가깝게 모의할 수 있을 것으로 기대되어진다.

복합적층판의 비선형 불규칙 진동 해석에 관한 고전 이론, 1차 및 3차 전단 이론의 비교 연구 (Nonlinear Random Vibration of Laminated Composite Plates by Comparison of Classical Theory, 1st and 3rd Order Shear Theories)

  • Kang, Joowon
    • 한국전산구조공학회논문집
    • /
    • 제13권1호
    • /
    • pp.129-138
    • /
    • 2000
  • 새로운 공학재료의 하나인 복합재료는 뛰어난 역학적 성질로 인해 공학 전 분야에 걸쳐 사용이 점진적으로 증가하고 있다. 이 복합재료에 대한 개발뿐만 아니라 정적 혹은 동적 하중을 받는 복합 구조물의 연구는 많이 수행되어 왔고 대부분 가해지는 하중은 확정적인 것으로 가정되었다. 그러나 실제 많은 상황에 있어 구조물에 가해지는 하중의 성질은 불규칙적이다. 본 연구에서는 불규칙 진동을 받는 복합적층판의 비선형 해석을 유한요소법에 의거하여 해석하였으며 고전 판 이론과 전단변형을 고려한 1차, 3차 이론을 비교 분석하였다. 많은 복합재료들은 전단 변형에 있어 재료적인 비선형을 나타내므로 이를 본 연구에 포함하였다.

  • PDF

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

Probabilistic assessment on buckling behavior of sandwich panel: - A radial basis function approach

  • Kumar, R.R.;Pandey, K.M.;Dey, S.
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.197-210
    • /
    • 2019
  • Probabilistic buckling behavior of sandwich panel considering random system parameters using a radial basis function (RBF) approach is presented in this paper. The random system properties result in an uncertain response of the sandwich structure. The buckling load of laminated sandwich panel is obtained by employing higher-order-zigzag theory (HOZT) coupled with RBF and probabilistic finite element (FE) model. The in-plane displacement variation of core as well as facesheet is considered to be cubic while transverse displacement is considered to be quadratic within the core and constant in the facesheets. Individual and combined stochasticity in all elemental input parameters (like facesheets thickness, ply-orientation angle, core thickness and properties of material) are considered to know the effect of different degree of stochasticity, ply- orientation angle, boundary conditions, core thickness, number of laminates, and material properties on global response of the structure. In order to achieve the computational efficiency, RBF model is employed as a surrogate to the original finite element model. The stiffness matrix of global response is stored in a single array using skyline technique and simultaneous iteration technique is used to solve the stochastic buckling equations.

A Quick Hybrid Atmospheric-interference Compensation Method in a WFS-less Free-space Optical Communication System

  • Cui, Suying;Zhao, Xiaohui;He, Xu;Gu, Haijun
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.612-622
    • /
    • 2018
  • In wave-front-sensor-less adaptive optics (WFS-less AO) systems, the Jacopo Antonello (JA) method belongs to the model-based class and requires few iterations to achieve acceptable distortion correction. However, this method needs a lot of measurements, especially when it deals with moderate or severe aberration, which is undesired in free-space optical communication (FSOC). On the contrary, the stochastic parallel gradient descent (SPGD) algorithm only requires three time measurements in each iteration, and is widely applied in WFS-less AO systems, even though plenty of iterations are necessary. For better and faster compensation, we propose a WFS-less hybrid approach, borrowing from the JA method to compensate for low-order wave front and from the SPGD algorithm to compensate for residual low-order wave front and high-order wave front. The correction results for this proposed method are provided by simulations to show its superior performance, through comparison of both the Strehl ratio and the convergence speed of the WFS-less hybrid approach to those of the JA method and SPGD algorithm.

확률유한요소법을 이용한 확률적 변위분석 (Probabilistic Displacement Analysis Using Stochastic Finite Element Method)

  • 나상민;문현구
    • 터널과지하공간
    • /
    • 제13권5호
    • /
    • pp.397-402
    • /
    • 2003
  • 일반적으로 암반의 물성은 암반이 가지고 있는 불확실성이란 특성 때문에 하나의 대표치로 표현되는 것보다는 어느 정도의 분산성을 포함하는 값으로 표현되는 것이 타당하다. 이러한 특성은 지하구조물 설계에 중요한 부분이지만 아직까지 잘 정립되지 못한 부분이다. 확률유한요소법은 결정론적 유한요소법에 대비되는 말로써 구조계의 불확실성을 해석에 반영하기 위해 개발된 방법이다. 따라서, 이 방법을 이용하면 구조계의 응답 변화도를 얻을 수 있고 이를 통하여 확률적 안정성 분석이 이루어 질 수 있다. 본 연구에서는 암반물성(변형계수)을 평균과 표준편차로 정의되는 확률변수로 표현하여 정수압상태의 암반에 원형공동이 굴착될 경우 변위의 응답변화도를 분석하였다. 분석된 변위의 응답변화도는 변형계수의 표준편차에 따라 상당한 편차를 보이고 있어 신뢰성 있는 변형계수의 평균과 표준편차를 이용한 지하구조물의 확률적 안정성 분석이 이루어져야 할 필요성을 보여주고 있다.

Optimal User Density and Power Allocation for Device-to-Device Communication Underlaying Cellular Networks

  • Yang, Yang;Liu, Ziyang;Min, Boao;Peng, Tao;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권2호
    • /
    • pp.483-503
    • /
    • 2015
  • This paper analyzes the optimal user density and power allocation for Device-to-Device (D2D) communication underlaying cellular networks on multiple bands with the target of maximizing the D2D transmission capacity. The entire network is modeled by Poisson point process (PPP) which based on stochastic geometry. Then in order to ensure the outage probabilities of both cellular and D2D communication, a sum capacity optimization problem for D2D system on multiple bands is proposed. Using convex optimization, the optimal D2D density is obtained in closed-form when the D2D transmission power is determined. Next the optimal D2D transmission power is obtained in closed-form when the D2D density is fixed. Based on the former two conclusions, an iterative algorithm for the optimal D2D density and power allocation on multiple bands is proposed. Finally, the simulation results not only demonstrate the D2D performance, density and power on each band are constrained by cellular communication as well as the interference of the entire system, but also verifies the superiority of the proposed algorithm over sorting-based and removal algorithms.