• Title/Summary/Keyword: Stochastic hydrologic model

Search Result 43, Processing Time 0.031 seconds

Analysis of Hydrologic data using Poincare Section and Neural Network (Poincare Section과 신경망 기법을 이용한 수문자료 분석)

  • La, Chang-Jin;Kim, Hung-Soo;Kim, Joong-Hoon;Kim, Eung-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.817-826
    • /
    • 2002
  • Many researchers have been tried to forecast the future as analyzing data characteristics and the forecasting methodology may be divided into two cases of deterministic and stochastic techniques. However, the understanding data characteristics may be very important for model construction and forecasting. In the sense of this view, recently, the deterministic method known as nonlinear dynamics has been studied in many fields. This study uses the geometrical methodology suggested by Poincare for analyzing nonlinear dynamic systems and we apply the methodology to understand the characteristics of known systems and hydrologic data, and determines the possibility of forecasting according to the data characteristics. Say, we try to understand the data characteristics as constructing Poincare map by using Poincare section and could conjecture that the data sets are linear or nonlinear and an appropriate model.

Assessment of Uncertainty for Applying Nash's Model Using the Hydrologic Similarity of Basins (유역의 수문학적 상사성을 이용한 Nash 모형의 불확실성 평가)

  • Seong, Kee-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.399-411
    • /
    • 2003
  • An approach determining a confidence interval of Nash's observed mean instantaneous unit hydrograph is developed. In the approach, both two parameters are treated as correlated gaussian random variables based on the theory of Box-Cox transformation and the regional similarity relation, so that linear statistical parameter estimation is possible. A parametric bootstrap method is adopted to give the confidence interval of the mean observed hydrograph. The proposed methodology is also applicable to estimate the parameters of Nash's model for un-gauged basins. An application to a watershed has shown that the proposed approach is adequate to assess the uncertainty of the Nash's hydrograph and to evaluate parameters for un-gauged basins.

A Long-Term Water Budget Analysis for an Ungaged River Baisn (미계측 유역의 장기 물수지 분석에 관한 연구)

  • Yoo, Keum Hwan;Kim, Tae Kyun;Yoon, Yong Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.113-119
    • /
    • 1991
  • In the present study, a methodology has been established for water budget analysis of a river basin for which monthyl rainfall and evaporation data are the only available hydrologic data. The monthly rainfall data were first converted into monthyl runoff data by an empirical formula from which long-term runoff data were generated by a stochastic generation mothod. Thomas-Fiering model. Based on the generated long-term data low flow frequency analysis was made for each of the oberved and generated data set, the low flow series of each data set being taken as the water supply for budget analysis. The water demands for various water utilization were projected according to the standard method and the net water consumption computed there of. With the runoff series of the driest year of each generated data set as an input water budget computation was made through the composite reservoirs comprised of small reserviors existing in the basin by deficit-supply method. The water deficit computed through the reservior operation study showed that the deficit radically increases as the return period of low flow becomes large. This indicates that the long-term runoff data generated by stochastic model are a necessity for a reliable water shortage forecasting to cope with the long-term water resourse planning of a river basin. F.E.M. program (ADINA) is also presented herein.

  • PDF

Development and validation of poisson cluster stochastic rainfall generation web application across South Korea (포아송 클러스터 가상강우생성 웹 어플리케이션 개발 및 검증 - 우리나라에 대해서)

  • Han, Jaemoon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.335-346
    • /
    • 2016
  • This study produced the parameter maps of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall generation model across South Korea and developed and validated the web application that automates the process of rainfall generation based on the produced parameter maps. To achieve this purpose, three deferent sets of parameters of the MBLRP model were estimated at 62 ground gage locations in South Korea depending on the distinct purpose of the synthetic rainfall time series to be used in hydrologic modeling (i.e. flood modeling, runoff modeling, and general purpose). The estimated parameters were spatially interpolated using the Ordinary Kriging method to produce the parameter maps across South Korea. Then, a web application has been developed to automate the process of synthetic rainfall generation based on the parameter maps. For validation, the synthetic rainfall time series has been created using the web application and then various rainfall statistics including mean, variance, autocorrelation, probability of zero rainfall, extreme rainfall, extreme flood, and runoff depth were calculated, then these values were compared to the ones based on the observed rainfall time series. The mean, variance, autocorrelation, and probability of zero rainfall of the synthetic rainfall were similar to the ones of the observed rainfall while the extreme rainfall and extreme flood value were smaller than the ones derived from the observed rainfall by the degree of 16%-40%. Lastly, the web application developed in this study automates the entire process of synthetic rainfall generation, so we expect the application to be used in a variety of hydrologic analysis needing rainfall data.

A Simulation Model for the Intermittent Hydrologic Process(I) - Alternate Renewal Process (ARP) and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(I) - 교대재생과정(交代再生過程)(ARP)과 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.509-521
    • /
    • 1994
  • This study is an effort to develop computer simulation model that produce precipitation patterns from stochastic model. A stochastic model is formulated for the process of daily precipitation with considering the sequences of wet and dry days and the precipitation amounts on wet days. This study consists of 2 papers and the process of precipitation occurrence is modelled by an alternate renewal process (ARP) in paper (I). In the ARP model for the precipitation occurrence, four discrete distributions, used to fit the wet and dry spells, were as follows; truncated binomial distribution (TBD), truncated Poisson distribution (TPD), truncated negative binomial distribution (TNBD), logarithmic series distribution (LSD). In companion paper (II) the process of occurrence is developed by Markov chain. The amounts of precipitation, given that precipitation has occurred, are described by a Gamma. Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Daily precipitation series model consists of two models, A-Wand A-G model, by combining the process of precipitation occurrence and a continuous probability distribution on the precipitation of wet days. To evaluate the performance of the simulation model, output from the model was compared with historical data of 7 stations in the Nakdong and Seomjin river basin. The results of paper (1) show that it is possible to design a model for the synthetic generation of IX)int precipitation patterns.

  • PDF

A development of stochastic simulation model based on vector autoregressive model (VAR) for groundwater and river water stages (벡터자기회귀(VAR) 모형을 이용한 지하수위와 하천수위의 추계학적 모의기법 개발)

  • Kwon, Yoon Jeong;Won, Chang-Hee;Choi, Byoung-Han;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1137-1147
    • /
    • 2022
  • River and groundwater stages are the main elements in the hydrologic cycle. They are spatially correlated and can be used to evaluate hydrological and agricultural drought. Stochastic simulation is often performed independently on hydrological variables that are spatiotemporally correlated. In this setting, interdependency across mutual variables may not be maintained. This study proposes the Bayesian vector autoregression model (VAR) to capture the interdependency between multiple variables over time. VAR models systematically consider the lagged stages of each variable and the lagged values of the other variables. Further, an autoregressive model (AR) was built and compared with the VAR model. It was confirmed that the VAR model was more effective in reproducing observed interdependency (or cross-correlation) between river and ground stages, while the AR generally underestimated that of the observed.

Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble (다중 기상모델 앙상블을 활용한 다지점 강우시나리오 상세화 기법 개발)

  • Kim, Tae-Jeong;Kim, Ki-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.327-340
    • /
    • 2015
  • General Circulation Models (GCMs) are the basic tool used for modelling climate. However, the spatio-temporal discrepancy between GCM and observed value, therefore, the models deliver output that are generally required calibration for applied studies. Which is generally done by Multi-Model Ensemble (MME) approach. Stochastic downscaling methods have been used extensively to generate long-term weather sequences from finite observed records. A primary objective of this study is to develop a forecasting scheme which is able to make use of a MME of different GCMs. This study employed a Nonstationary Hidden Markov Chain Model (NHMM) as a main tool for downscaling seasonal ensemble forecasts over 3 month period, providing daily forecasts. Our results showed that the proposed downscaling scheme can provide the skillful forecasts as inputs for hydrologic modeling, which in turn may improve water resources management. An application to the Nakdong watershed in South Korea illustrates how the proposed approach can lead to potentially reliable information for water resources management.

Estimation of Future Reference Crop Evapotranspiration using Artificial Neural Networks (인공신경망 기법을 이용한 장래 잠재증발산량 산정)

  • Lee, Eun-Jeong;Kang, Moon-Seong;Park, Jeong-An;Choi, Jin-Young;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.1-9
    • /
    • 2010
  • Evapotranspiration (ET) is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. In this study, artificial neural network (ANN) models for reference crop evapotranspiration ($ET_0$) estimation were developed on a monthly basis (May~October). The models were trained and tested for Suwon, Korea. Four climate factors, daily maximum temperature ($T_{max}$), daily minimum temperature ($T_{min}$), rainfall (R), and solar radiation (S) were used as the input parameters of the models. The target values of the models were calculated using Food and Agriculture Organization (FAO) Penman-Monteith equation. Future climate data were generated using LARS-WG (Long Ashton Research Station-Weather Generator), stochastic weather generator, based on HadCM3 (Hadley Centre Coupled Model, ver.3) A1B scenario. The evapotranspirations were 549.7 mm/yr in baseline period (1973-2008), 558.1 mm/yr in 2011-2030, 593.0 mm/yr in 2046-2065, and 641.1 mm/yr in 2080-2099. The results showed that the ANN models achieved good performances in estimating future reference crop evapotranspiration.

Risk Assessment of Levee Embankment Applying Reliability Index (신뢰도 지수를 적용한 하천제방의 위험도 평가)

  • Ahn, Ki-Hong;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.547-558
    • /
    • 2009
  • General reliability assessment of levees embankment is performed with safety factors for rainfall characteristics and hydrologic and hydraulic parameters, based on the results of deterministic analysis. The safety factors are widely employed in the field of engineering handling model parameters and the diversity of material properties, but cannot explain every natural phenomenon. Uncertainty of flood analysis and related parameters by introducing stochastic method rather than deterministic scheme will be required to deal with extreme weather and unprecedented flood due to recent climate change. As a consequence, stochastic-method-based measures considering parameter uncertainty and related factors are being established. In this study, a variety of dimensionless cumulative rainfall curve for typhoon and monsoon season of July to September with generation method of stochastic temporal variation is generated by introducing Monte Carlo method and applied to the risk assessment of levee embankment using reliability index. The result of this study reflecting temporal and regional characteristics of a rainfall can be used for the establishment of flood defence measures, hydraulic structure design and analysis on a watershed.

Finite Element A nalysis of Gradually and Rapidly Varied Unsteady Flow in Open Channel:I.Theory and Stability Analysis (개수로내의 점변 및 급변 부정류에 대한 유한요소해석 :I.이론 및 수치안정성 해석)

  • Han, Kun-Yeun;Park, Jae-Hong;Lee, Jong-Tae
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.167-178
    • /
    • 1996
  • The simulation techniques of hydrologic data series have been developed for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etx. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in western USA since the early of 1980's. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and first order autoregressive model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).

  • PDF