• 제목/요약/키워드: Stochastic Uncertainty

검색결과 279건 처리시간 0.031초

Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method

  • Hosseini, Seyed Mahmoud;Shahabian, Farzad
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.41-64
    • /
    • 2014
  • The main objective of this article is the exploitation of a stochastic hybrid mesh-free method based on stochastic generalized finite difference (SGFD), Newmark finite difference (NFD) methods and Monte Carlo simulation for thermoelastic wave propagation and coupled thermoelasticity analysis based on GN theory (without energy dissipation). A thick hollow cylinder with Gaussian uncertainty in mechanical properties is considered as an analyzed domain for the problem. The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in details. Also, the time histories and distribution on thickness of cylinder of maximum, mean and variance values of temperature and radial displacement are studied for various coefficients of variations (COVs).

A Suggestion of Fuzzy Estimation Technique for Uncertainty Estimation of Linear Time Invariant System Based on Kalman Filter

  • Kim, Jong Hwa;Ha, Yun Su;Lim, Jae Kwon;Seo, Soo Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.919-926
    • /
    • 2012
  • In order to control a LTI(Linear Time Invariant) system subjected to system noise and measurement noise, first of all, it is necessary to estimate the state of system with reliability. Kalman filtering technique has been widely used to estimate the state of the stochastic LTI system with stationary noise characteristics because of its estimation ability versus algorithm simplicity. However, it often fails to estimate the state of the LTI system of which system parameter uncertainty exists partly and/or input uncertainty exists. In this paper, a new estimation technique based on Kalman filter is suggested for stochastic LTI system under parameter uncertainty and/or input uncertainty. A fuzzy estimation algorithm against uncertainties is introduced so as to compensate the state estimate filtered by Kalman filter. In order to verify the state estimation performance of the suggested technique, several simulations are accomplished.

확률유한요소법을 이용한 설계변수의 불확실성을 고려한 전기기기의 형상최적설계 (Shape Optimization of Electric Machine Considering Uncertainty of Design Variable by Stochastic Finite Element Method)

  • 허진;홍정표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권4호
    • /
    • pp.219-225
    • /
    • 2000
  • This paper presents the shape optimization considering the uncertainty of design variable to find robust optimal solution that has insensitive performance to its change of design variable. Stochastic finite element method (SFEM) is used to treat input data as stochastic variables. It is method that the potential values are series form for the expectation and small variation. Using correlation function of their variables, the statistics of output obtained form the input data distributed. From this, design considering uncertainty of design variables.

  • PDF

On-the-fly Estimation Strategy for Uncertainty Propagation in Two-Step Monte Carlo Calculation for Residual Radiation Analysis

  • Han, Gi Young;Kim, Do Hyun;Shin, Chang Ho;Kim, Song Hyun;Seo, Bo Kyun;Sun, Gwang Min
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.765-772
    • /
    • 2016
  • In analyzing residual radiation, researchers generally use a two-step Monte Carlo (MC) simulation. The first step (MC1) simulates neutron transport, and the second step (MC2) transports the decay photons emitted from the activated materials. In this process, the stochastic uncertainty estimated by the MC2 appears only as a final result, but it is underestimated because the stochastic error generated in MC1 cannot be directly included in MC2. Hence, estimating the true stochastic uncertainty requires quantifying the propagation degree of the stochastic error in MC1. The brute force technique is a straightforward method to estimate the true uncertainty. However, it is a costly method to obtain reliable results. Another method, called the adjoint-based method, can reduce the computational time needed to evaluate the true uncertainty; however, there are limitations. To address those limitations, we propose a new strategy to estimate uncertainty propagation without any additional calculations in two-step MC simulations. To verify the proposed method, we applied it to activation benchmark problems and compared the results with those of previous methods. The results show that the proposed method increases the applicability and user-friendliness preserving accuracy in quantifying uncertainty propagation. We expect that the proposed strategy will contribute to efficient and accurate two-step MC calculations.

Stochastic design charts for bearing capacity of strip footings

  • Shahin, Mohamed A.;Cheung, Eric M.
    • Geomechanics and Engineering
    • /
    • 제3권2호
    • /
    • pp.153-167
    • /
    • 2011
  • Traditional design methods of bearing capacity of shallow foundations are deterministic in the sense that they do not explicitly consider the inherent uncertainty associated with the factors affecting bearing capacity. To account for such uncertainty, available deterministic methods rather employ a fixed global factor of safety that may lead to inappropriate bearing capacity predictions. An alternative stochastic approach is essential to provide a more rational estimation of bearing capacity. In this paper, the likely distribution of predicted bearing capacity of strip footings subjected to vertical loads is obtained using a stochastic approach based on the Monte Carlo simulation. The approach accounts for the uncertainty associated with the soil shear strength parameters: cohesion, c, and friction angle, ${\phi}$, and the cross correlation between c and ${\phi}$. A set of stochastic design charts that assure target reliability levels of 90% and 95%, are developed for routine use by practitioners. The charts negate the need for a factor of safety and provide a more reliable indication of what the actual bearing capacity might be.

확률적 비선형 동적계의 해석에 관한 연구 (A Study on the Analysis of Stochastic Nonlinear Dynamic System)

  • 남성현;김호룡
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.697-704
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents the stochastic model of a nonlinear dynamic system with uncertain parameters under nonstationary stochastic inputs. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method and the second moment equation is numerically evaluated by stochastic process closure method, 4th cumulant neglect closure method and Runge-Kutta method. But the first and the second moment equations are coupled each other, so this equations are approximately evaluated by a iterative method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

확률적 동적계의 해석에 관한 연구 (A Study on the Analysis of Stochastic Dynamic System)

  • 남성현;김호룡
    • 한국정밀공학회지
    • /
    • 제12권4호
    • /
    • pp.127-134
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents a generalized stochastic model of dynamic system subjected to bot external and parametric nonstationary stochastic input. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method. But the second moment equation is founded to constitute an infinite coupled set of differential equations, so this equations are numerically evaluated by cumulant neglect closure method and Runge-Kutta method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

  • PDF

공급업자의 공급불확실성이 재고관리 비용에 미치는 효과에 관한 연구 (Assessing the Effects of Supply Uncertainty on Inventory-Related Costs)

  • 박상욱
    • 한국경영과학회지
    • /
    • 제26권3호
    • /
    • pp.105-117
    • /
    • 2001
  • This paper models supply uncertainty in the dynamic Newsboy problem context. The system consists of one supplier and one retailer who places an order to the supplier every period to meet stochastic demand. Supply uncertainty is modeled as the uncertainty in quantities delivered by the supplier. That is, the supplier delivers exactly the amount ordered by the retailer with probability of $\beta$ and the amount minus K with probability of (1-$\beta$). We formulate the problem as a dynamic programming problem and prove that retailer’s optimal replenishment policy is a stationary base-stock policy. Through a numerical study, we found that the cost increase due to supply uncertainty is significant and that the costs increase more rapidly as supply uncertainty increases. We also identified the effects of various system parameters. One of the interesting results is that as retailer’s demand uncertainty, the other uncertainty in our model, increases, the cost increase due to supply uncertainty becomes less significant.

  • PDF

형상의 불확실성을 고려한 확률유한요소 해석 (Stochastic finite element analysis considering the uncertainty of shape)

  • 김영균;홍정표;김규탁;허진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.200-202
    • /
    • 1999
  • A method of stochastic finite element analysis is developed for yield a uncertainty of engineering problems. Where, a stochastic finite-element method for shapes modeling is proposed a6 a means to solve the models with the uncertainty and variety. This method is based on the probability and illustrated by a first-Order Second-Moment Method and considering the covariance of random variables. The validity and accuracy of the stochastic finite element method is verified through comparing with those solved by the conventional 2-D finite element method.

  • PDF

Stochastic vibration analysis of functionally graded beams using artificial neural networks

  • Trinh, Minh-Chien;Jun, Hyungmin
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.529-543
    • /
    • 2021
  • Inevitable source-uncertainties in geometry configuration, boundary condition, and material properties may deviate the structural dynamics from its expected responses. This paper aims to examine the influence of these uncertainties on the vibration of functionally graded beams. Finite element procedures are presented for Timoshenko beams and utilized to generate reliable datasets. A prerequisite to the uncertainty quantification of the beam vibration using Monte Carlo simulation is generating large datasets, that require executing the numerical procedure many times leading to high computational cost. Utilizing artificial neural networks to model beam vibration can be a good approach. Initially, the optimal network for each beam configuration can be determined based on numerical performance and probabilistic criteria. Instead of executing thousands of times of the finite element procedure in stochastic analysis, these optimal networks serve as good alternatives to which the convergence of the Monte Carlo simulation, and the sensitivity and probabilistic vibration characteristics of each beam exposed to randomness are investigated. The simple procedure presented here is efficient to quantify the uncertainty of different stochastic behaviors of composite structures.