• 제목/요약/키워드: Stochastic Rainfall Model

검색결과 75건 처리시간 0.027초

우수관의 설계를 위한 신뢰성해석기법의 적용 (The application of reliability analysis for the design of storm sewer)

  • 권혁재;이경제
    • 한국수자원학회논문집
    • /
    • 제51권10호
    • /
    • pp.887-893
    • /
    • 2018
  • 본 연구에서는 신뢰성해석기법을 이용하여 우수관에 대한 최적설계기법을 제시하였다. 최근 빈번히 일어나고 있는 국지성호우에 대해 기존의 결정론적 설계기법으로는 우수관의 용량을 초과하여 도시침수가 일어나기 쉽다. 이러한 문제를 해결하기 위해서는 우수관의 설계변수들을 확률변수로 인식하는 추계학적 기법이 필요하다. 이를 위해서 본 연구에서는 FORM (First Order Reliability Method)을 사용하여 우수관의 신뢰성해석모형을 개발하였다. 개발된 신뢰성해석기법은 5개 지역의 실제 구축된 우수관에 적용하여 안전도를 분석하고 공사비증가에 따른 안전도의 변화를 분석하였다. 다섯 개 지역의 빈도별 강우강도를 분석하고 신뢰성해석을 통해 우수관의 용량초과확률을 정량적으로 산정할 수 있었다.

산사태 위험도 추정을 위한 지하수위 변동의 추계론적 수치 해석 (A Stochastic Numerical Analysis of Groundwater Fluctuations in Hillside Slopes for Assessing Risk of Landslides)

  • 이인모
    • 한국지반공학회지:지반
    • /
    • 제3권4호
    • /
    • pp.41-54
    • /
    • 1987
  • 본 논문에서는 무한사면에서 강우에 따른 지하수위 변동을 합리적으로 추정할 수 있는 추계론적 수치해석모델이 개발되었다. 특히, 투수계수, 비산출율(Specific Yield) 등의 지하수흐름에 필요한 계수들과 지하암반층의 공간적 변화에 의하여 지하수위가 공간적으로 변하는 효과에 관해 중점적으로 연구하였으며, 이러한 계수들의 공간적 변화를 추정하기 위하여 Kriging 이론을 도입하였다. Kriging 이론은 몇개의 제한된 실측치로부터 실측을 하지 못한 각각의 수치해석 요소에 불편, 최소 분산을 갖는 값들을 추정할 수 있는 방법이다. 사면방향의 일차원 수치해석 모델, Kriging 이론, 1차근사해법을 조합하여 추계론적 1차원 수치해석 프로그램을 개발하였다. 또한 사면방향의 지하수위 변동뿐만 아니라, 횡방향의 변동도 조사하기 위하여 확정론적 2차원 모델도 개발하였다. 한 무한사면에 대하여 개발된 모델을 이용하여 예제해석을 한 결과 투수계수나 비산출율의 공간적 변화뿐만 아니라 지하암반층의 공간에 따른 요철도 지하수위의 공간적 변화에 큰 영향을 미침을 알게 되었다. 또한 지하수위는 사면방향으로 큰 변동을 보일뿐 아니라 횡방향으로의 변동 또한 무시할 수 없을 정도로 큼을 알 수 있었다. 개발된 모델의 결과들은 지하수위 변동에 의한 산사태 위 험도 분석시에 이용될 수 있다.

  • PDF

추계학적 강우모형의 모수 추정을 위한 최적화 기법의 적합성 분석 (Analysis of the suitability of optimization methods for parameter estimation of stochastic rainfall model.)

  • 조현곤;김광섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.327-327
    • /
    • 2018
  • 돌발홍수, 집중호우 등 강우가 발생 원인되는 자연재해에 효과적으로 대응하기 위한 연구가 활발히 이루어지고 있으나 강우의 시공간 변동성과 발생과정의 복잡한 물리과정으로 인해 강우 추정에 한계를 가진다. 일반적으로 강우 추정은 물리적, 추계학적 모형을 이용하며 추계학적 모형의 점과정(point process)을 이용하여 강우를 생산한다. 추계학적 강우 모형은 관측 강우의 시간 스케일, 강우발생 빈도, 강우 강도 등 강우 구조의 특성을 반영 할 수 있다는 장점을 가지고 있으나 생산되는 강우의 구조가 추정되는 매개변수에 크게 의존한다는 점에서 실제 강우에 적합한 매개변수 추정이 중요하다. 본 연구에서는 낙동강 유역내에 있는 20개의 강우관측 지점을 대상으로 1973년-2017년까지의 강우 관측자료를 수집하였으며 추계학적 강우생성 모형으로 점과정을 이용하는 추계학적 강우생성 모형인 NSRPM(Neymann-Scott rectangular pulse model)을 선정하였다. NSRPM모형의 매개변수를 추정하기위한 최적기법으로 DFP(Davidon-Fletcher-Powell), GA(genetic algorithm), Nelder-Mead, DE(differential evolution)를 이용하여 추정된 매개변수의 적합성을 분석하고 지역특성을 고려한 매개변수 추정 기법을 제시하였다. 추정된 모형의 매개변수를 분석한 결과 DE와 Nelder-Mead 기법이 높은 적합성을 보였으며 DFP, GA기법이 상대적으로 낮은 적합도를 보였다.

  • PDF

다중 기상모델 앙상블을 활용한 다지점 강우시나리오 상세화 기법 개발 (Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble)

  • 김태정;김기영;권현한
    • 대한토목학회논문집
    • /
    • 제35권2호
    • /
    • pp.327-340
    • /
    • 2015
  • 기후모형으로 가장 널리 사용되는 GCM의 불확실성 및 시공간적 편의로 인하여 GCM으로부터 생산된 기상정보를 응용수문분야에서 직접적으로 이용하기 위해서는 상세화 과정이 필수적으로 요구된다. 본 연구에서는 선행연구에서 개발된 비정상성 은닉 마코프 모형(Non-stationary Hidden Markov Chain Model, NHMM)을 기반으로 다지점 공간상관성을 고려할 수 있는 Chow-Liu Tree 알고리즘과 결합하여 유역단위 강우시나리오 상세화 기법(CLT-NHMM)으로 확장하였으며, 낙동강 유역에 적용하여 적용성을 평가하였다. 상관행렬(correlation matrix)을 통한 강우네트워크의 공간상관성 평가결과 유역상관성이 우수하게 모의하는 것을 확인하였으며, 강수의 빈도 및 양적 관점에서 효과적인 모의가 가능하였다. 본 연구에서 제시한 CLT-NHMM 모형은 수자원뿐만 아니라 수문자료를 입력 자료로 하는 농업, 보건, 환경 및 에너지 등 다양한 응용기상분야에 핵심 기술로 활용이 전망된다.

포아송 클러스터 강우 모형을 이용한 미래 시단위 이하 강우의 추계학적 모의 (Stochastic simulation of future sub-hourly rainfall using Poisson cluster rainfall model)

  • 박정하;김동균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.284-284
    • /
    • 2023
  • 도시 침수의 발생과 규모는 도시 유역이 가지는 짧은 도달 시간으로 인하여 주로 시단위 이하의 짧은 지속시간의 강우의 극한 및 변동성에 따라 결정된다. 미래 기간에 대하여 도시 수문 시스템의 적정성을 평가하기 위해서는 기후변화에 따른 시단위 이하 강우의 특성을 살펴보아야한다. 그러나 기후변화 영향 평가 도구로 활용되는 기후 모형들은 대부분 일단위의 결과물을 제공하여 시단위 이하의 미세 규모 강우의 특성을 나타낼 수 없다. 이에 따라 본 연구에서는 기후 모형 모의 결과와 포아송 클러스터 강우 모형을 이용하여 미래 시단위 이하 강우 시계열을 모의하는 방법을 제안한다. 첫째로, 포아송 클러스터 기반 강우 생성 알고리즘과 폭풍우 재배열 알고리즘을 결합한 최신 모형을 선정하였다. 해당 모형은 광범위한 시간 규모에서 관측된 강우량의 주요 통계와 극값을 재현할 수 있는 모형이다. 그 다음 강우 모형에 적합시킬 관측 강우량 통계(평균, 분산, 공분산, 왜도, 우기 비율)를 계산하였다. 둘째, 강우 통계 간의 선형 관계를 도출하였다. 여기서는 클러스터에 있는 모든 관측소의 통계를 사용하여 회귀의 신뢰도를 높였다. 셋째, 강우 평균 조정을 위한 Change Factor는 제어(2000~2019년) 및 미래(2041~2070년) 기간의 기후 모형 자료를 사용하여 계산하였다. 넷째, 조정된 15분 강우 평균은 관측 평균에 Change Factor을 곱하여 계산하고 조정된 강우 평균과 통계 간의 관계를 사용하여 미래 강우 통계 세트를 추정하였다. 여러 통계 세트를 생성한 후 마지막으로 미래 통계에 강우 모형을 적합시켜 최종적으로 미래 시단위 이하 강우 시계열을 모의하였다. 이 방법은 CMIP6에 참여하는 기후 모델의 기후 예측 데이터를 사용하여 용산(415) 및 동래(940) AWS 관측소에 적용되었다. 두 관측소의 미래 강우 모의 결과, 시단위 이하 시간 규모에서 극값이 증가하는 추세를 보였다.

  • PDF

실측유량 자료를 활용한 홍수량 빈도해석 기법 평가 (Evaluation of flood frequency analysis technique using measured actual discharge data)

  • 김태정;김장경;송재현;김진국;권현한
    • 한국수자원학회논문집
    • /
    • 제55권5호
    • /
    • pp.333-343
    • /
    • 2022
  • 수자원의 계획 및 설계에 활용되는 홍수량 산정 방법은 홍수량 빈도해석 방법과 강우-유출모형에 의한 방법이 사용된다. 홍수량 빈도해석 방법은 홍수량 자료를 직접 빈도해석 하여 확률홍수량을 산정하며 이론적으로 가장 정확한 방법으로 평가된다. 기존의 홍수량 해석은 자료의 제약으로 인하여 실측유량의 직접 빈도해석은 한계가 있었으나 과거부터 국가적으로 수문조사를 수행하여 10년 이상의 실측유량 자료를 확보할 수 있는 수준에 도달하였다. 본 연구는 수위-유량 관계곡선식을 통하여 안정적으로 확보된 실측유량 자료를 활용하여 홍수량 빈도해석을 수행하였다. 홍수량 빈도해석을 위하여 Bayesian 기법을 적용하여 매개변수를 산정하고 빈도별 홍수량의 불확실성을 정량화하였다. 확률홍수량 산정 결과는 장기간의 강우량 자료를 적용하여 강우-유출모형으로 산정된 홍수량과 근접한 것을 확인하였다. 수문조사를 통하여 장기간의 실측유량 자료를 활용하여 다각적인 관점으로 수문해석이 가능할 것으로 판단된다.

인공신경망 기법을 이용한 장래 잠재증발산량 산정 (Estimation of Future Reference Crop Evapotranspiration using Artificial Neural Networks)

  • 이은정;강문성;박정안;최진영;박승우
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.1-9
    • /
    • 2010
  • Evapotranspiration (ET) is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. In this study, artificial neural network (ANN) models for reference crop evapotranspiration ($ET_0$) estimation were developed on a monthly basis (May~October). The models were trained and tested for Suwon, Korea. Four climate factors, daily maximum temperature ($T_{max}$), daily minimum temperature ($T_{min}$), rainfall (R), and solar radiation (S) were used as the input parameters of the models. The target values of the models were calculated using Food and Agriculture Organization (FAO) Penman-Monteith equation. Future climate data were generated using LARS-WG (Long Ashton Research Station-Weather Generator), stochastic weather generator, based on HadCM3 (Hadley Centre Coupled Model, ver.3) A1B scenario. The evapotranspirations were 549.7 mm/yr in baseline period (1973-2008), 558.1 mm/yr in 2011-2030, 593.0 mm/yr in 2046-2065, and 641.1 mm/yr in 2080-2099. The results showed that the ANN models achieved good performances in estimating future reference crop evapotranspiration.

Bayesian NSRP 모형을 이용한 추계학적 Downscaling 기법 개발 (Development of Stochastic Rainfall Downscaling using Bayesian Neyman-Scott Rectangular Pulse Model(NSRPM))

  • 김장경;반우식;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.9-9
    • /
    • 2018
  • 추계학적 강우생성모형 중 포아송 클러스터(Poisson Cluster) 모형은 단일지점에 대하여 시간강우량의 관측연한 문제점을 해결하기 위한 강우모형으로 강우 단계별 계층적 구조를 이해하는데 유용한 모형이다. 특히 강우 특성을 계절, 지역 등과 같이 비교하는 기준에 따라 5~6개의 비교적 적은 매개변수들로 모의 강우시계열을 생성할 수 있다는 점에서 장기간 강우분석에 필요한 관측연한 문제를 보완할 수 있다. 그러나 매개변수 최적해가 수렴되지 않는 사례가 많고, 매개변수들이 강우의 물리적 특성을 반영하는 것에 비해 내포된 불확실성에 관한 연구는 미흡하다. 본 연구에서는 포아송 클러스터 강우생성모형 중 Neyman-Scott Rectangular Pulse(NSRP) 모형을 Bayesian 모형과 연계한 Bayesian NSRP 모형을 개발하여 매개변수간 물리적 상관성을 고려한 최적화 기법을 개발하였다. Bayesian 모형은 물리적 범위가 다른 매개변수간의 결합확률분포를 산정하여 사후분포(posterior)를 추정하므로 매개변수 최적화와 불확실성 정량화 문제를 동시에 해결할 수 있다. 최종적으로 Bayesian NSRP 모형에 기후변화 시나리오의 통계적 특성을 고려한 시간단위 강우시계열 생성 모의 기법의 활용 가능성을 평가하고자 한다.

  • PDF

5분에서 수십년 사이의 모든 타임스케일에서 강수의 다양한 통계적 특성을 정확히 재현하여 복합재난 모의에 적합한 추계학적 강수생성모형 (A stochastic rainfall generation model that accurately reproduces the various statistical properties at the timescales from 5 minutes through decades, making it suitable for complex disaster simulations)

  • 김동균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.117-117
    • /
    • 2023
  • 도시 홍수, 하천 범람, 산사태와 같은 폭우와 관련된 재해는 자주 동시에 발생하며, 각 재해는 서로 다른 범위의 시간 스케일에서 강우 변동성에 민감하게 반응한다. 따라서 재해 복합화 모델링에 적합한 확률 강우 모델은 모든 유형의 재해와 관련된 모든 시간 스케일에서 강우 변동성을 잘 재현할 수 있어야 한다. 본 연구에서는 5분에서 10년 사이의 시간 스케일에서 다양한 강우통계특성을 재현할 수 있는 추계학적 강우 생성기를 제안하였다. 이 모델은 우선 Randomized Bartlett-Lewis Rectangular Pulse (RBLRP) 모델을 사용하여 미세 규모의 강우량 시계열을 생성한 후, 연속된 폭풍 사이의 상관관계 구조가 유지되도록 폭풍우의 순서를 섞는다. 마지막으로, 별도의 월별 강우량 모델링 결과에 따라 월 단위로 시계열을 재배열한다. 독일 보훔에서 기록된 69년간의 5분 강우량 데이터를 사용하여 본 모형을 검증한 결과, 평균, 분산, 공분산, 왜곡도 및 강우 간헐성은 5분에서 10년에 이르는 시간 스케일에서 체계적인 편향 없이 잘 재현됨은 물론, 5분에서 3일 사이의 시간 스케일에서의 극한 강수량 값도 잘 재현음을 확인하였다. 아울러, 극한 강우 및 산사태에 큰 영향을 주는 극한 강우 발생 전 과거 7일간의 강수량도 정확히 재현되었다.

  • PDF

일 강우량의 모의 발생을 통한 갈수유량 계열의 산정 및 빈도분석 (Low Flow Frequency Analysis of Steamflows Simulated from the Stochastically Generated Daily Rainfal Series)

  • 김병식;강경석;서병하
    • 한국수자원학회논문집
    • /
    • 제32권3호
    • /
    • pp.265-279
    • /
    • 1999
  • 본 연구에서는, Markov 연쇄 모형에 의해 산정된 모의 일 강우량을 일 유출모형인 Tand 모형에 입력시켜 모의 일유출량을 산정함으로써 저수유량계열을 확장하는 방법을 개발하였다. 또한, 모의된 일 유량계열로부터 지속기간별 연 최저치 계열을 작성하였으며, 지속기간별 연 최저치계열에 대한 빈도분석을 시행하였다. 분석에 사용된 분포형은 Lognormal-2, Lognormal-3, Gamma-2, Gamma-3, LogGamma-3, Gumbel-2, Weibull-2 분포이었으며, 모수추정은 모멘트법과 최우도법을 사용하였다. Kolmogorov - Sminorv 검정방법으로 지속기간별 연 최저치 계열에 적합한 확률분포형을 결정하고, 용담댐 지점을 대상으로 하여 지속기간별 갈수 빈도곡선을 산정하였다. 본 연구에서 제안된 방법을 적용하면 과거 저수 유량계열의 통계적 특성을 잘 나타내는 일 유량의 모의가 가능 하여, 갈수유량계열 자료가 빈곤한 유역에서 확률 갈수량을 추정하는데 유용하리라고 판단된다.

  • PDF