• Title/Summary/Keyword: Stober Method

Search Result 12, Processing Time 0.024 seconds

Synthesis of Hollow Silica by Stöber Method with Double Polymers as Templates

  • Nguyen, Anh-Thu;Park, Chang Woo;Kim, Sang Hern
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.173-176
    • /
    • 2014
  • The hollow $SiO_2$ spheres with uniform size were synthesized by a modified Stober method under the control of polyelectrolytes (PSS and PAA) as templates. This synthetic route includes the formation of spherical colloid micelle in ethanol solution, hydrolysis of TEOS under control of ammonia, and the removal of polyelectrolyte by washing or calcination. Hollow silica spheres with controllable core diameters between 100 and 270 nm and wall thickness between 15 and 50 nm have been synthesized. The influence of template solution concentration and solvent and dispersant on the formation of silica hollow spheres is studied and reported in detail.

Synthesis of Monodisperse Silica Particles using Rotating Cylinder Systems

  • Cho, Young-Sang;Shin, Cheol Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.792-799
    • /
    • 2016
  • Monodisperse silica nanospheres were synthesized by Stober method using rotating cylinder systems with batch or continuous manner. The particle size could be controlled by adjusting the reactant compositions such as the amount of monomer, catalyst, and water in the reaction mixture. The size and monodispersity of the ceramic particles could be controlled by changing the reaction medium with different alcohols other than ethanol or changing the reaction temperature. The effect of Taylor number (Ta) on the average diameter and standard deviation of silica particles were also studied by adjusting the rotation speed of inner cylinder, and the maximum diameter of particles was observed at Ta ${\approx}3,000$.

Metallurgical Refinement of Multicrystalline Silicon by Directional Solidification (일방향 응고법에 의한 다결정 실리콘의 야금학적 정련)

  • Jang, Eunsu;Park, Dongho;Yu, Tae U;Moon, Byung Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.111.1-111.1
    • /
    • 2011
  • The solar energy is dramatically increasing as the alternative energy source and the silicon(Si) solar cell are used the most. In this study, the improved process and equipment for the metallurgical refinement of multicrystalline Si were evaluated for the inexpensive solar cell. The planar plane and columnar dendrite aheadof the liquid-solid interface position caused the superior segregation of impurities from the Si. The solidification rate and thermal gradient determined the shape of dendrite in solidified Si matrix solidified by the directional solidification(DS) method. To simulate this equipment, the commercial software, PROCAST, was used to solve the solidification rate and thermal gradient. Si was vertically solidified by the DS system with Stober process and up-graded metallurgical grade or metallurgical grade Si was used as the feedstock. The inductively coupled plasma mass spectrometry (ICP) was used to measure the concentration of impurities in the refined Si ingot. According to the result of ICP and simulation, the high thermal gradient between the two phases wasable to increase the solidification rate under the identical level of refinement. Also, the separating heating zone equipped with the melting and solidification zone was effective to maintain the high thermal gradient during the solidification.

  • PDF

Fabrication of Nearly Monodispersed Silica Nanoparticles by Using Poly(1-vinyl-2-pyrrolidinone) and Their Application to the Preparation of Nanocomposites

  • Chung, You-Sun;Jeon, Mi-Young;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • To fabricate dental nanocomposites containing finely dispersed silica nanoparticles, nearly monodispersed silica nanoparticles smaller than 25 nm were synthesized without forming any aggregates via a modified sol-gel process. Since silica nanoparticles synthesized by the Stober method formed aggregates when the particle size is smaller than 25 nm, the synthetic method was modified by changing the reaction temperature and adding poly(1-vinyl-2-pyrrolidinone) (PVP) to the reaction mixture. The size of the formed silica nanoparticles was reduced by increasing the reaction temperature or adding PVP. Furthermore, the formation of aggregates with primary silica nanoparticles smaller than 25 nm was prevented by increasing the amount of PVP added to the reaction mixture. To enhance the dispersion of the silica particles in an organic matrix, the synthesized silica nanoparticles were treated with 3-methacryloxypropyltrimethoxysilane ($\gamma$-MPS). A dental nanocomposite containing finely dispersed silica nanoparticles could be produced by using the surface-treated silica nanoparticles.

Synthesis of Hollow Silica Using PMMA Particle as a Template (PMMA 고분자 입자를 템플릿으로 이용한 실리카 중공체의 제조)

  • Hwang, Ha-Soo;Cho, Kye-Min;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.353-355
    • /
    • 2010
  • Poly(methyl methacrylate) (PMMA) particles were prepared by soap-free emulsion polymerization of MMA in the presence of a cationic initiator, 2,2'-azobis(2-methylpropionamidine) (AIBA). The Stober method has been adopted to coat silica on the surface of these cationic particles. Negatively charged silica precursors were coated onto cationic particle surfaces by electronic interaction. During the coating process, hollow particles were directly obtained by dissolution of PMMA.

Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stöber method

  • Moradi, Hiresh;Atashi, Peyman;Amelirad, Omid;Yang, Jae-Kyu;Chang, Yoon-Young;Kamranifard, Telma
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.387-403
    • /
    • 2022
  • Silica nanoparticles, which have a broad range of sizes and specific surface features, have been used in many industrial applications. This study was conducted to synthesize monodispersed silica nanoparticles directly from tetraethyl orthosilicate (TEOS) with an alkaline catalyst (NH3) based on the sol-gel process and the Stöber method. A central composite design (CCD) is used to build a second-order (quadratic) model for the response variables without requiring a complete three-level factorial experiment. The process was then optimized to achieve the minimum particle size with the lowest concentration of TEOS. Dynamic light scattering and scanning electron microscopy were used to analyze the size, dispersity, and morphology of the synthesized nanoparticles. After optimization, a confirmation test was carried out to evaluate the confidence level of the software prediction. The results revealed that the predicted optimization is consistent with experimental procedures, and the model is significant at the 95% confidence level.

Synthesis of Silica Nanoparticles Having the Controlled Size and their Application for the Preparation of Polymeric Composites (크기가 제어된 실리카 나노입자 합성과 제조된 입자의 고분자계 복합재 응용)

  • Kim, Jong-Woung;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.75-79
    • /
    • 2006
  • Silica nanoparticles for polymeric dental restorative composites were prepared by Stober method, and then the effects of surface treatment of silica particles with Lmethacrylofpropyltrimethofsilane $(\gamma-MPS)$ on the dispersity of the silica particles in the organic matrix was investigated. Particles having various average size were prepared by using controlled amounts of tetraethylorthosilicate(TEOS), water, and catalyst and by changing solvent used for reaction. The site of particles prepared by using methanol as solvent was smaller than that prepared by using ethanol as solvent. In addition, the size of particles was increased by decreasing amounts of water and by increasing amounts of TEOS and catalyst. Hydrophobic silica nanoparticles was prepared by reacting hydrophilic nanoparticles with $\gamma-MPS$ to improve interfacial properties with organic matrix. Amounts of $\gamma-MPS$ per unit mass of the particles was increased by decreasing particle size. even though the amount of $\gamma-MPS$ per specific surface area were nearly the same regardless of the particle size. The dispersity of the silica particles in the organic matrix was improved when the surface treated silica particles were used for preparing the polymeric dental restorative composites.

Fabrication of SiOx Anode Active Materials Using Spherical Silica Powder and Shape Control Technology (구형 단분산 실리카 분말을 이용한 SiOx 음극활물질 제조 및 형상조절 기술)

  • Ju-Chan Kwon;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.530-536
    • /
    • 2023
  • The theoretical capacity of silicon-based anode materials is more than 10 times higher than the capacity of graphite, so silicon can be used as an alternative to graphite anode materials. However, silicon has a much higher contraction and expansion rate due to lithiation of the anode material during the charge and discharge processes, compared to graphite anode materials, resulting in the pulverization of silicon particles during repeated charge and discharge. To compensate for the above issues, there is a growing interest in SiOx materials with a silica or carbon coating to minimize the expansion of the silicon. In this study, spherical silica (SiO2) was synthesized using TEOS as a starting material for the fabrication of such SiOx through heating in a reduction atmosphere. SiOx powder was produced by adding PVA as a carbon source and inducing the reduction of silica by the carbothermal reduction method. The ratio of TEOS to distilled water, the stirring time, and the amount of PVA added were adjusted to induce size and morphology, resulting in uniform nanosized spherical silica particles. For the reduction of the spherical monodisperse silica particles, a nitrogen gas atmosphere mixed with 5 % hydrogen was applied, and oxygen atoms in the silica were selectively removed by the carbothermal reduction method. The produced SiOx powder was characterized by FE-SEM to examine the morphology and size changes of the particles, and XPS and FT-IR were used to examine the x value (O/Si ratio) of the synthesized SiOx.

Synthesis and Characterization of Spherical SiO2@Y2O3 : Eu Core-Shell Composite Phosphors (구형 SiO2@Y2O3: Eu 코어-쉘 복합체 형광체 합성 및 특성)

  • Song, Woo-Seuk;Yang, Hee-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.447-453
    • /
    • 2011
  • The monodisperse spherical $SiO_2$ particles were overcoated with $Y_2O_3:Eu^{3+}$ phosphor layers via a Pechini sol-gel process and the resulting $SiO_2@Y_2O_3:Eu^{3+}$ core-shell phosphors were subsequently annealed at $800^{\circ}C$ at an ambient atmosphere. The crystallographic structure, morphology, and luminescent property of core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL). The spherical, nonagglomerated $SiO_2$ particles prepared by a Stober method exhibited a relatively narrow size distribution in the range of 260-300 nm. The thickness of phosphor shell layer in the core-shell particles can be facilely controlled by varying the coating number of $Y_2O_3:Eu^{3+}$ phosphors. The core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors showed a strong red emission, which was dominated by the $^5D_0-^7F_2$ transition (610 nm) of $Eu^{3+}$ ion under the ultraviolet excitation (263 nm). The PL emission properties of $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were also compared with pure $Y_2O_3:Eu^{3+}$ nanophosphors.

Removal of Anionic Dyes and Heavy Metal Ions Using Silica Nanospheres or Porous Silica Micro-particles Modified with Various Coupling Agents (다양한 커플링제로 표면 개질된 실리카들을 활용한 음이온성 염료 및 중금속의 제거)

  • Sung, Sohyeon;Lee, Minjun;Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.596-610
    • /
    • 2021
  • For application in adsorption process, we synthesized silica nanospheres by Stober method, and silica particles with wrinkled surface as well as macroporous silica particles were also fabricated by utilizing emulsion droplet as micro-reactors, followed by modification of the particle surface using suitable coupling agents containing amine groups. These particles exhibited improved adsorption capacity for heavy metal ions and anionic dyes, which were difficult to be removed by conventional silica particles without surface modification. Anionic dye, methyl orange could be removed almost completely by adsorption using porous silica particles modified using APTES. The adsorption efficiency of heavy metal like copper ions was close to 100%, when porous silica was used as adsorbent particles modified with AAPTS.