• Title/Summary/Keyword: Stitching Method

Search Result 142, Processing Time 0.026 seconds

Static Strength of Composite Single-lap Joints Using I-fiber Stitching Process with different Stitching Pattern and Angle (I-fiber Stitching 공법을 적용한 복합재료 Single-lap Joint의 Stitching 패턴과 각도에 따른 정적 강도 연구)

  • Song, Sang-Hoon;Back, Joong-Tak;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.296-301
    • /
    • 2020
  • Laminated composite materials have excellent in-plane properties, but are vulnerable in thickness directions, making it easy to delamination when bending and torsion loads are applied. Thickness directional reinforcement methods of composite materials that delay delamination include Z-pinning, Stitching, Tufting, etc., and typically Z-pinning and Stitching method are commonly used. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. In this paper, I-fiber stitching method, which complement and improve weakness of Z-pinning and Stitching method, was proposed, and the static strength of composite single-lap joints using I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process. The thickness of the composite adherend was fixed, and 5 types of specimens were manufactured with varying the stitching pattern (5×5, 7×7) and angle (0°, 45°). From the test, the failure load of the specimen reinforced by the I-fiber stitching process was increased by up to 143% compared to that of specimen without reinforcement.

Study on 3 DoF Image and Video Stitching Using Sensed Data

  • Kim, Minwoo;Chun, Jonghoon;Kim, Sang-Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4527-4548
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from inertia sensors to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw, pitch, and roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data. In addition, the stitching accuracy of video data was improved using the same sensed data, with discrete calculation of homograph matrix. The experimental results for stitching accuracies and speed using sensed data are presented in this paper.

High-quality Stitching Method of 3D Multiple Dental CT Images (3차원 다중 치과 CT 영상의 고화질 스티칭 기법)

  • Park, Seyoon;Park, Seongjin;Lee, Jeongjin;Shin, Juneseuk;Shin, Yeong-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1205-1212
    • /
    • 2014
  • In this paper, we propose a high-quality stitching method of 3D multiple dental CT images. First, a weighted function is generated using the difference of two distance functions that calculate a distance from the nearest edge of an overlapped region to each position. And a blending ratio propagation function for two gradient vectors is parameterized by the difference and magnitude of gradient vectors that is also applied by the weighted function. When the blending ratio is propagated, an improved region growing scheme is proposed to decide the next position and calculate the blending intensity. The proposed method produces a high-quality stitching image. Our method removes the seam artifact caused by the mean intensity difference between images and vignetting effect. And it removes double edges caused by local misalignment. Experimental results showed that the proposed method produced high-quality stitching images for ten patients. Our stitching method could be usefully applied into the stitching of 3D or 2D multiple images.

Rapid Stitching Method of Digital X-ray Images Using Template-based Registration (템플릿 기반 정합 기법을 이용한 디지털 X-ray 영상의 고속 스티칭 기법)

  • Cho, Hyunji;Kye, Heewon;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.6
    • /
    • pp.701-709
    • /
    • 2015
  • Image stitching method is a technique for obtaining an high-resolution image by combining two or more images. In X-ray image for clinical diagnosis, the size of the imaging region taken by one shot is limited due to the field-of-view of the equipment. Therefore, in order to obtain a high-resolution image including large regions such as a whole body, the synthesis of multiple X-ray images is required. In this paper, we propose a rapid stitching method of digital X-ray images using template-based registration. The proposed algorithm use principal component analysis(PCA) and k-nearest neighborhood(k-NN) to determine the location of input images before performing a template-based matching. After detecting the overlapping position using template-based matching, we synthesize input images by alpha blending. To improve the computational efficiency, reduced images are used for PCA and k-NN analysis. Experimental results showed that our method was more accurate comparing with the previous method with the improvement of the registration speed. Our stitching method could be usefully applied into the stitching of 2D or 3D multiple images.

A Study on the Impact Behavior of Bulletproof Materials According to the Combining Method

  • Jihyun Kwon;Euisang Yoo
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.157-164
    • /
    • 2022
  • Representative bulletproof materials, such as aramid or ultra-high molecular weight polyethylene(UHMWPE), have excellent strength and modulus in the plane direction but are very vulnerable to forces applied in the thickness direction. This paper reports a study on the effects of reinforcement in the thickness direction when bulletproof composite fabrics are prepared to improve their performance. Aramid and UHMWPE fabrics were combined using the film-bonding, needle-punching, or stitching methods and then subjected to low-velocity projectile and ball-drop impact tests. The results of the low-velocity projectile test indicated that the backface signature(BFS) decreased by up to 29.2% in fabrics obtained via the film-bonding method. However, the weight of the film-bonded fabric increased by approximately 23% compared with that obtained by simple lamination, and the fabric stiffened on account of the binder. Flexibility, light weight for wearability, and excellent bulletproof performance are very important factors in the development of bulletproof materials. When the needle-punching method was used, the BFS increased as the fibers sustained damage by the needle. When the composite fabrics were combined by stitching, no significant difference in weight and thickness was observed, and the BFS showed similar results. When a diagonal stitching pattern was employed, the BFS decreased as the stitching density increased. By contrast, when a diamond stitching pattern was used, the fabric fibers were damaged and the BFS increased as the stitching density increased.

Experimental Optimal Choice Of Initial Candidate Inliers Of The Feature Pairs With Well-Ordering Property For The Sample Consensus Method In The Stitching Of Drone-based Aerial Images

  • Shin, Byeong-Chun;Seo, Jeong-Kweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1648-1672
    • /
    • 2020
  • There are several types of image registration in the sense of stitching separated images that overlap each other. One of these is feature-based registration by a common feature descriptor. In this study, we generate a mosaic of images using feature-based registration for drone aerial images. As a feature descriptor, we apply the scale-invariant feature transform descriptor. In order to investigate the authenticity of the feature points and to have the mapping function, we employ the sample consensus method; we consider the sensed image's inherent characteristic such as the geometric congruence between the feature points of the images to propose a novel hypothesis estimation of the mapping function of the stitching via some optimally chosen initial candidate inliers in the sample consensus method. Based on the experimental results, we show the efficiency of the proposed method compared with benchmark methodologies of random sampling consensus method (RANSAC); the well-ordering property defined in the context and the extensive stitching examples have supported the utility. Moreover, the sample consensus scheme proposed in this study is uncomplicated and robust, and some fatal miss stitching by RANSAC is remarkably reduced in the measure of the pixel difference.

The Fast 3D mesh generation method for a large scale of point data (대단위 점 데이터를 위한 빠른 삼차원 삼각망 생성방법)

  • Lee, Sang-Han;Park, Kang
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.705-711
    • /
    • 2000
  • This paper presents a fast 3D mesh generation method using a surface based method with a stitching algorithm. This method uses the surface based method since the volume based method that uses 3D Delaunay triangulation can hardly deal with a large scale of scanned points. To reduce the processing time, this method also uses a stitching algorithm: after dividing the whole point data into several sections and performing mesh generation on individual sections, the meshes from several sections are stitched into one mesh. Stitching method prevents the surface based method from increasing the processing time exponentially as the number of the points increases. This method works well with different types of scanned points: a scattered type points from a conventional 3D scanner and a cross-sectional type from CT or MRI.

  • PDF

Accurate Stitching for Polygonal Surfaces

  • Zhu, Lifeng;Li, Shengren;Wang, Guoping
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • Various applications, such as mesh composition and model repair, ask for a natural stitching for polygonal surfaces. Unlike the existing algorithms, we make full use of the information from the two feature lines to be stitched up, and present an accurate stitching method for polygonal surfaces, which minimizes the error between the feature lines. Given two directional polylines as the feature lines on polygonal surfaces, we modify the general placement method for points matching and arrive at a closed-form solution for optimal rotation and translation between the polylines. Following calculating out the stitching line, a local surface optimization method is designed and employed for postprocess in order to gain a natural blending of the stitching region.

Improved Feature Descriptor Extraction and Matching Method for Efficient Image Stitching on Mobile Environment (모바일 환경에서 효율적인 영상 정합을 위한 향상된 특징점 기술자 추출 및 정합 기법)

  • Park, Jin-Yang;Ahn, Hyo Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.39-46
    • /
    • 2013
  • Recently, the mobile industries grow up rapidly and their performances are improved. So the usage of mobile devices is increasing in our life. Also mobile devices equipped with a high-performance camera, so the image stitching can carry out on the mobile devices instead of the desktop. However the mobile devices have limited hardware to perform the image stitching which has a lot of computational complexity. In this paper, we have proposed improved feature descriptor extraction and matching method for efficient image stitching on mobile environment. Our method can reduce computational complexity using extension of orientation window and reduction of dimension feature descriptor when feature descriptor is generated. In addition, the computational complexity of image stitching is reduced through the classification of matching points. In our results, our method makes to improve the computational time of image stitching than the previous method. Therefore our method is suitable for the mobile environment and also that method can make natural-looking stitched image.

Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization

  • Chen, Yiwei;Miao, Erlong;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.341-344
    • /
    • 2014
  • This study proposes a modified sub-aperture stitching algorithm, which uses an image sharpening algorithm and particle swarm optimization to improve the stitching accuracy. In sub-aperture stitching interferometers with high positional accuracy, the high-frequency components of measurements are more important than the low-frequency components when compensating for position errors using a sub-aperture stitching algorithm. Thus we use image sharpening algorithms to strengthen the high-frequency components of measurements. When using image sharpening algorithms, sub-aperture stitching algorithms based on the least-squares method easily become trapped at locally optimal solutions. However, particle swarm optimization is less likely to become trapped at a locally optimal solution, thus we utilized this method to develop a more robust algorithm. The results of simulations showed that our algorithm compensated for position errors more effectively than the existing algorithm. An experimental comparison with full aperture-testing results demonstrated the validity of the new algorithm.