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Abstract −Various applications, such as mesh composition and model repair, ask for a natural stitching for polygonal surfaces.
Unlike the existing algorithms, we make full use of the information from the two feature lines to be stitched up, and present
an accurate stitching method for polygonal surfaces, which minimizes the error between the feature lines. Given two
directional polylines as the feature lines on polygonal surfaces, we modify the general placement method for points matching
and arrive at a closed-form solution for optimal rotation and translation between the polylines. Following calculating out the
stitching line, a local surface optimization method is designed and employed for postprocess in order to gain a natural blending
of the stitching region.

1. Introduction

With the development of hardware and software for

digital geometry processing, discrete surfaces are getting

more popular in CAD and virtual animator modeling

due to its flexibility in topological expression and

convenience for rendering. The precision and smoothness

is a major disadvantage of discrete surface, which can

be compensated by high resolution and meaningful

sampling.

However, in modeling realm, it is still difficult to

design polygonal surface having complex topology.

Traditional modeling methods, such as extruding, lofting

and tessellating spline surfaces, only generate simple

topology. Thus constructive solid geometry (CSG) operations

are raised to tackle this problem, in which users are

required to place each primitive carefully for generating

complex models by Boolean operations, which, however,

suffers a lot of problems such as computational efficiency

and numerical stability [1]. If we mark feature lines to

guide the placement of each surface, by stitching up

them according to the feature lines, a complex model can

also be constructed in a bottomup manner.

Besides, a popular metaphor of modeling called modeling

by example asks for a composition operation [2]. Some

mesh editing techniques, such as mesh fusion [5][7] and

snapping [6], are employed to implement the composition

operation by either extrapolating the disconnected surface

or blending the overlap areas. In order to obtain visually

good merging results and retrench computing cost,

stitching the boundaries [2], [3], [4] is also a

appropriate alternative for mesh composition.

Another way to acquire complex models is to reconstruct

them from 3D scans. Due to the noise, different reconstruction

algorithms are not always able to produce watertight

surface [8]. Artifacts like small gaps and overlaps can

be handled by some appropriate stitching operations

[9].

In the applications above, current implementations of

stitching mainly care about the visual quality. Here we

present a stitching strategy which mainly focuses on

precision : an optimal stitching line which optimizingly

fits each seam of the surface patches. In the following

text, we call the seams to be stitched feature lines and

name the merged version of feature line stitching line.

Regarding polygonal surface, all the lines can be represented

as polylines. After marking the feature lines to be
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Fig. 1. Given the feature lines, we’re searching for an optimal
transformation T and stitching line B.
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stitched, motivated by [10], we give a closed-form solution

for optimal rigid transformation between polylines using

quaternions, which enables free initial placement of the

input surfaces. Then the optimal fitted stitching line is

calculated, minimizing the L2 error of the feature lines.

Local surface optimization is then taken to the stitched

surface and achieve creating a smooth transition from the

stitching line to each surface patch.

2. Related work

The key problems in mesh composition are correspondence

construction and snapping region merging, similar to

the basic problems in shape morphing [11]. 

Previous work on vertex correspondence problem

could be classified into two categories: boundary

correspondence and surface correspondence. For boundary

correspondence, [3] proposed three strategies for mesh

merging, among which is helpful to surface stitching

needs some user interaction to mark the sparse key

vertex correspondence. In [13], part placement is aided

by a user sketch interface, and the correspondence is

then constructed by a projection from one boundary to

the other surface. In modeling by example phase [2],

Funkhouser et al. provide a voxel space implementation

of ICP algorithm [12] to solve the boundary placement

problem. For surface correspondence, in [14], a combined

parameterization for the source and target mesh is built.

Further contributions on compatible surface mapping

see [15], [16]. One problem with combined parameterization

is that it is only possible for two homeomorphic surfaces.

This constraint could be solved by performing a joint

parameterization just on the base region other than the

whole meshes [17]. [6] introduces a soft-ICP algorithm,

building the surface correspondence locally and softly,

simultaneously finishing the blending stage.

Besides soft-ICP, there are some other snapping region

merging methods. In [2], corresponding vertices on each

boundary were attached and triangulated, followed by an

additional smooth command. Poisson mesh editing [3]

distributes the error from merging to the free vertices

smoothly by solving a Poisson equation on mesh, while

Laplacian mesh editing [18] linearly interpolates differential

coordinates to generate a natural blending between two

surfaces. Surface extrapolation could also do the merging

work for disconnected parts. [19] performs a mesh

extrapolating algorithm, while [5], [7] proposed a point-

based extrapolation, followed by a mesh reconstruction

algorithm.

For gap closing in mesh repair, volumetric methods

are popular [20], [21], for identifying matching parts

and gaps is convenient by volumetric representation.

Surface oriented algorithms usually involve a stitching

operation, which is instructive to our purpose. [22]

matches the parts, and triangulated them minimizing some

measurement such as the total areas of triangles and the

dihedral angles of them. [23] determines corresponding

edges within an error tolerance and snaps the corresponding

vertices to close the gap. [8] builds both the vertex-

vertex correspondence and vertexedge correspondence,

and snap the correspondence progressively due to the

error measurement of each correspondence.

Comparing to all previous work, our boundary-based

method avoids distortion-introducing cross parameterization

for surfaces and guessing the blank region. Comparing

to previous boundary joining approaches, ICP-based

technique [2] should take the local optimality into

consideration, projection-based approach [3], [13] only

make use of one boundary polyline, and another method

in [3] is sensitive to the initial placement of the part.

Our method enables free initial placement of surfaces,

and the non-iterative solution doesn’t lead to a local

optimality. Full information including point geometry

and point order from feature lines are sufficiently utilized

for calculating a stitching line. Part placement and

intermediate boundary solving are all accomplished in a

framework of minimizing the L2 error between polylines.

Section 3 will give the details of our algorithm, and

some experiments on mesh composition and mesh

repair using our method will be presented and discussed

in section 4.

3. A framework for surface patch stitching

Due to the arbitrariness of initial positions of the surfaces,

an automatic placement for the feature lines is needed,

for it is not convenient for users to put them together

manually. Moreover, because of the ubiquity of the

designing errors, it is not always possible to match the

seams perfectly. Hence, we are going to search for an

optimal transformation and an intermediate line to

attach each surface patch together. We integrate the

placement and polyline blending stage to obtain a good

performance for CSG-like applications. At the same

time, we decouple them from surface blending stage,

and provide a possibility for a postprocess stage to

erform local surface optimization, making it also useful

for mesh merging.

Here we build a boundary-based framework for

polygonal surface stitching. We take the polylines to be

stitched as our input, and generate an attached model

with the aligned and sewed polylines. The input of our

algorithm could be either specified manually or generated

by upstream applications.

3.1. Consistent parameterization
We note the two polygonal surface M1, M2 with the

directional feature lines B1, B2 to be stitched up.

Although the consistent parameterization for surfaces is

avoided, we still have to build a correspondence between

feature lines, which is more robust and meaningful for

surface stitching without unnecessary distortion and

heavy computational cost.

We select chord-length as the parameter and normalize
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the parametric domain to [0, 1] to get a consistent

parameterization for the two feature lines. Suppose the

parameterizationsof  B1 = {pi}
n

i=1, B2 = {qi}
m

i=1 are {ui}
n

i=1,

and {vi}
m

i =1, with u0 = v0 = 0 and un = vm = 1. Then a

combined parameterization is constructed as an overlay

of {ui}
n

i =1, and {vi}
m

i =1, that is {si} = {ui} {vi}. A

parametric domain resampling approach is then taken to

B1 and B2, that is, the points with the parameter {si} are

sampled on B1 and B2. The points having the same

parameter are correspondent in the following stage.

3.2. Error-directed surface placement
After resampling, we still note points on B1 and B2

as{pi} and {qi}, with i = 1 to n. An optimal transformation

T should be determined to automatically align these

parts, making the feature lines best fitted. Most previous

approaches use the algorithm in [10], or a standard

SVD minimization [24], solving for a rotation R and

translation t which minimizing the error functional:

(1)

Observing that the information we get is not only the

point geometry but also connectivity of the point sets,

here we introduce a different error measurement as

objective of our optimization, the L2 distance for curves:

(2)

Where x(u), y(u) is the parametric presentation of B1

and B2 on the parametric domain stated in 3.1. For x(u)

and y(u) are piecewise linear,

(3)

Substitute x(u) = pi + (pi+1 − pi)u and y(u) = qi + (qi + 1 −
qi)u in [si, si+1] into (3), we could rewrite (2) as

                     (4)

The first term measures the error between the middle

point of each segment, depicting the “positional distance”

between two segments after the rigid transformation.

The second term contains the stretching and rotation

energy after the transformation (see Fig. 2.). Comparing

with the measurement (1), we could not simply use

algorithm in [10] to minimize the first term of (4). We

should also take the second term into consideration. In

order to take advantage of quaternion for calculating the

rotation, after circumspect analysis of formula (4), we

achieve a close-form solution for T using quaternion,

see appendix.

3.3. Stitching line computing
Assume boundary B2 is transformed by the optimal

rotation R and translation t, we note the new position of

B2 as y(u). In order to stitch up x(u) and y(u), we would

design a common boundary replacing B1 and B2, that is

just the feature where surface M1 touches surface M2.

For the purpose of making the common boundary, we

call it stitching line z(u), keep as much information as

x(u) and y(u), we minimize the error term:

(5)

We’ve already built the correspondence for polyline

x(u) and y(u). So here comes the calculation of the

polyline z(u) which is closest to both x(u) and y(u) on

the same parametric domain. Assuming at [si, si + 1],

z(u) = ri + (ri + 1−ri)u. We still use the notation for x(u),

y(u) in 3.2, and derive a polyline version of (5):

                  

                  

                  

                  

We range all ri in a vector R. The above formula

could be written as E(z, x, y) = RT
AR + bTR + c.

Where A is a constant matrix and b is a column vector

with respect to {pi} and {qi}. Noticing E is quadratic in

R, minimizing E leads to solve a linear equation

AR = b (6)

Proposition 1 Given two polylines x(u), y(u) on the
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Fig. 2. li,1 is the positional distance and li,2 measuresthe
stretching and rotation
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sameparameter domain, the polyline z(u) which minimizes

the L2 error (5) to both x(u) and y(u) could be written as

z(u) = 1/2(x(u) + y(u))

Proof.Substitute ri = 1/2(pi + qi) into R, the equation (6)

holds. 

Moreover, we could get the conclusion that for polyline

{ri} : ri = wpi + (1 − w)qi minimizes

3.4. Stitching region optimization
We simply update the feature lines x(u) and y(u) to

z(u) calculated in 3.3, and get a joint surface of M1 and

M2. Stitching surfaces in this way keeps each surface’s

extrinsic shape (surface quality) and intrinsic shape

(triangulation quality) mostly, only except the neighborhood

of the stitching line. For some ill-designed surface

patches (In our application, that means two patches

have quite different feature lines), although we place

the surface patches to the position where they best fitted

each other and get the optimal stitching line, the quality

of the stitched surface is still unsatisfied (Fig. 3). Here,

we suggest an optional local surface optimization stage

as a postprocessing. It’s not quite necessary to perform

surface optimization to the whole stitched surface, for

most of the surfaces may be intentionally designed

before our stitching, and the global optimization would

possibly affect them. In contrast with selecting the ROI

(region of influence) submesh and performing global

mesh optimization on it, we assign weights to all the

vertices and smoothly optimize the stitched surface near

the stitching line.

We adopt geodesic-based and laplacian-based weighting

strategies respectively. For geodesic-based weighting techniques,

we calculate the geodesic distance from each vertex v

to the stitching line B:

Here d(v, v' ) is the approximate geodesic distance from

v to v'. Fast marching method [15] or Dijkstra algorithm

could be used to evaluate them. Other techniques like

MMP algorithm [26] could get a more accurate result in

the cost of computation. We use region growing technique

to calculate these distances gradually from the stitching

line, and terminate the growing when the distance

reaches a userdefined threshold maxd. Then the weight

of vertex v could be simply assigned by

(7)

or using the region-of-influence function designed in [27]. 

For Laplacian-based weighting techniques, we recommend

the harmonic fields introduced in [28]. Setting weights

of the vertices on B to 1, and 0 to the boundary of ROI,

all the weights of vertices in ROI could be assigned

gracefully by solving a linear equation. The two

strategies we proposed both produce weights in [0, 1].

Set the ROI and the weights, we could perform mesh

optimization smoothly from the stitching line, whose

vertices all have weight 1, to vertices far from it, which

have quite little weights or 0 as their weights. Almost

all the mesh optimization algorithms involve some vertex

relocation process, either iterative [29], [30] or non-

iterative [31]. Suppose after vertex relocation, vertex v

would be moved to v'. We modified the relocation

procedure as

v'' = v + w(v' − v)

where w is the weight of v. In iterative optimizations,

this new relocation stage is performed iteratively. Based

on this framework of local optimization, we kept the

vertices far from the stitching line unchanged and

obtained a smoothly transition near the stitching line.

4. Applications and discussion

Implementation Since our algorithm merely needs

some calculation on the boundary, the stitching could

achieve at an interactive speed. We only need the user

to specify the end points and the direction of the

boundary. Then the model placement and stitching are

both performed automatically. Of course, the input of

our algorithm could also come from some upstream

applications, such as mesh segmentation, trimming, feature

extraction, etc. In the optional local region optimization

w  z u( ) x u( ) – 2 1 w–( )  z u( ) y u( ) – 2+ u   w 0 1,[ ]∈,d
0

 1

∫
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⎪
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=

Fig. 3. left:unsatisfied stitched surface. middle:the ROI of
stitching operation and its weight distribution. right:result after our
local optimization

Fig. 4. top:part of car body with cracks. bottom:the repaired model.
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procedure, we implemented the geodesic-based approach.

It simultaneously generates the weights and the ROI. If

we don’t need the local optimization, we just simply set

maxd = 0 in Eq.(7). Comparing to laplacian-based pproach,

it is more convenient for users to define the ROI.

Comparison The complexity of our algorithm and

the previous algorithm are both O(n), where n is the

number of the vertices. The computational cost satisfied

with almost any applications. Since we focus on the

precision, here we provide a quantitative comparison

between methods[4][6] which minimize (1) and our

method which minimizes (2). Noticing that algorithms

in [4][6] are surface-based, in order to make a more

meaningful comparison, we use a boundary-based version

of [4][6]. We use the hausdoff distance of the feature

lines after placement as the criterion of stitching error.

We randomly generate two polylines at different scales.

In order to reduce the influence of numerical stability,

for each scale, we do the experiment 1000 times, and

calculate the average errors as our results. Table1 shows

the experiment results.

Discussion In table.1, we can find that, excluding the

influence of numerical instability and data irregularity,

our method is more accurate statistically. However, as

the scale of the polylines increases, the vantage of our

algorithm reduces. This is an interpretable phenomenon.

The geometric meaning of (2) could be regarded

approximatively as the square area of the surface

bounded by the two polylines, which is more related to

hausdoff distance; Contrastly, metric (1) only cares about

the sum of the square distance of the corresponding

vertices of the two polylines. Although as the vertices

gets much denser, (1) approximates (2) gradually, the

conceptional “infinitely small” is unreachable, which

makes our method still more accurate than previous

methods. This higher precision of our method is more

beneficial to some manufacture application, which asks

for a higher resolution than screen error.

Applications An example of applying our approach

to CAD models see Fig. 5. For feature lines of CAD

parts are required to kept after the composition, we skip

the optimization stage.

Fig. 6 shows one example of mesh composition using

our strategy. A pig with fore camel foot is modeled by

our method. An optional local optimization stage is

taken to generate a smooth transition from the stitching

line to both body and legs. Fig. 1 is another example.

Out algorithm is also applicable to mesh repair. Fig. 4

is an example. We only need to mark the end points of

the crack, either manually or by feature recognition

algorithms, the repairment of the crack is performed by

our stitching method automatically.

5. Conclusion and future work

In this paper, we present a stitching strategy to

generate new models from simple polygonal surface

patches. We achieve at a transformation that best fit the

seam of the stitching boundary, and merge them with

the same error measurement. A local optimization

framework is then provided, which merely affect the

neighborhood of the stitching line. Using our strategy,

mesh composition can obtain a nice quality surface near

the stitching line with low computational cost.

Although we intend to keep most of the original

Table 1. Precision comparison with previous algorithm

n = 3 error (2) error (1) hausdoff error

our algorithm

algorithm in [4][6]

11.1392 10.1115 2.5544

11.3223 9.4075 3.2532

n = 5 error (2) error (1) hausdoff error

our algorithm

algorithm in [4][6

16.6654 14.0505  3.6366

16.9027 13.5235 3.7066

n = 50 error (2) error (1) hausdoff error

our algorithm

algorithm in [4][6

63.4165 49.4309 2.3453

63.4697 49.2564 2.3626

n = 300 error (2) error (1) hausdoff error

our algorithm

algorithm in [4][6]

157.8152 122.3988 1.2528

157.8179 122.3816 1.2541

Fig. 5. left:two free placement engineer parts. right:stitched model
without local optimization.

Fig. 6. A complex model composition of a body of pig and four
foot from a camel.
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surface unchanged, for some discrete patches having

quite different sampling rates, the optimization procedure

may not achieve at a natural combination of two surfaces.

Some preprocess or postprocess about resampling are

required. In the Future work, we would discuss some

issues on the tessellation near the stitching boundary.

With the CSG primitives getting more general, to build

topologically complex models, more work on CSG

representation should also be deeply researched besides

the error-minimizing stitching.
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Appendix

We are calculating a R and t to minimize (4). Our

derivation is under the framework of [10]. We’ve

checked that although the objective function and local

coordinate are different, quaternions are still useful for

calculating R. We do all the calculation in a local

coordinate to the centroids of the polyline’s midpoints

All the vertices are recorded in a new coordinate as

pi' = pi − , qi' = qi −

Then the first term of (4) becomes

Where t' = t − + R . The middle term of the above

expression is zero, and total error is minimized with

t' = 0. That is, the optimal translation t' = − R .

Here comes to optimize the rotation R, we remove all

the terms which are constant or only respect to translation

t, and get the reduced objective function of total error

(A.1)

Follow the derivation in section 4 of [10], we using

quaternion d representing rotation R, and substitute it

into (A.1). On the property of quaternions, (A.1) could

be represented as a quadratic in d: dTNd. Where

where  and 

Then the optimization problem turns to extract the

principle eigenvector e = (e0, e1, e2, e3)
T of matrix N.

Finally the rotation R could be reconstructed by the

quaternion e = (e0, e1, e2, e3)

More theoretical details are in [10].
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