• Title/Summary/Keyword: Stirring

Search Result 716, Processing Time 0.025 seconds

The Product Process of Rheology Material for Grain Size Control by Electromagnetic Stirring (전자교반을 이용한 결정립 제어 레오로지 소재의 성형 공정)

  • 서판기;정용식;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.733-736
    • /
    • 2004
  • Actual trends in automotive industry lead to an increase use of lightweight structures imposing the need for high strength aluminum alloys with complex shape. In the electromagnetic stirring process, it has many merits which are the exact control ability about material processing and a good point of the protection of environment comparison with the mechanical stirring. The interface of cells consisting of primary particle formed by the electromagnetic stirring due to particle regrowth during cooling the alloy. By electromagnetic stirring process, the microstructure of material has a good point, also it can control the material processing exactly.

  • PDF

Composite Structures of $SiC_p$/6063 Aluminum Alloy by Rheo-Compocasting. (Rheo-Compocasting에 의한 $SiC_p$/6063 Al합금의 복합조직)

  • Choe, Jeong-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 1990
  • Aluminum alloy matrix composites reinforced by SiC particles were prepared by rheocompocasting, a process which consists of the incoporation and distribution of reinforcement by stirring within a semi-solid alloy. When the volume fraction of SiCp and stirring speed were fixed, the dispersion of SiCp in Al-matrix alloy depended on stirring time and solid volume fraction in slurry. The results were as follows : 1) As a dispersed SiCp during stirring at $647^{\circ}C$ in 6063-Al alloy, SiC was better dispersed than that other temperature, where solid volume fraction was 43% in slurry. 2) When increased solid fraction in slurry, rate of dispersing SiC increased during stirring and porosities decreased in matrix alloy after casting. 3) Inspite of stirring with 800rpm, since solid particles of matrix alloy in slurry joined each other and occured joining growth, so that SiC was not dispersed into solid particle.

  • PDF

The Technology of Material Processing for Gram Size Control by Electromagnetic Stirring (전자기장을 이용한 결정립 제어 소재 공정 기술)

  • Jung Y. J.;Seo P. K.;Ko J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.254-258
    • /
    • 2004
  • Actual trends in automotive industry lead to an increase use of lightweight structures imposing the need fur high strength aluminum alloys with complex shape. In the electromagnetic stirring process, it has many merits which are the exact control ability about material processing and a good point of the protection of environment comparison with the mechanical stirring. The interface of cells consisting of primary particle formed by the electromagnetic stirring due to particle regrowth during cooling the alloy. By electromagnetic stirring process, the microstructure of material has a good point, also it can control the material processing exactly.

  • PDF

Chaotic Stirring of an Alternately-Driven-Cavity Flow (요동운동에 의한 Driven-Cavity 유동의 혼돈적 교반)

  • 서용권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.537-547
    • /
    • 1995
  • Numerical study on the chaotic stirring of viscous flow in an alternately driven cavity has been performed. Even under the Stokes-flow assumption, the inherent singularity at the corners made the problem not so easily accessible. With some special treatments to the region near the corners, the biharmonic equation was solved numerically by using the fully implicit method. The velocity field was then used in obtaining the trajectories of passive particles for studying the stirring effect. The three tools developed in the field of the nonlinear dynamics and chaos, that are the Poincare sections, the unstable manifolds, and the Lyapunov exponents, were used in analysing the stirring effect. It was shown that the unstable manifolds obtained in this study well fit the experimental results given by the previous investigators. It is predicted that the best stirring can be obtained when the aspect ratio a is near 0.8 and the dimensionless period T is in the range 4.3 - 4.7.

Microstructural Change in Rheocast AZ91D Magnesium Alloys with Stirring Rate and Isothermal Stirring Temperature (교반속도 및 등온교반온도에 따른 AZ91D 마그네슘합금 반응고 주조재의 미세조직 변화)

  • Yim, Chang-Dong;Shin, Kwang-Seon
    • Journal of Korea Foundry Society
    • /
    • v.23 no.3
    • /
    • pp.130-136
    • /
    • 2003
  • Rheocasting of AZ91D magnesium alloys yielded the microstructure consisted of the spherical primary particles in the matrix which is different from conventional casting. Rheocast ingots were produced under various processing conditions using batch type rheocaster. Morphology of primary particles was changed from rosette-shape to spherical shape with increasing stirring rate$(V_s)$ and decreasing isothermal stirring temperature$(T_s)$. With increasing $V_s$, more effective shearing between the particles occurred rather than the agglomeration and clustering, so the primary particle size decreased. But with decreasing $T_s$, primary particle size increased mainly due to sintering and partially Ostwald ripening. The sphericity of primary particles increased with increasing $V_s$ and decreasing $T_s$ due to enhanced abrasion among the primary particles. The uniformity of primary particle size increased with increasing Vs and $T_s$.

Microchip-based cell aggregometer using stirring-disaggregation mechanism

  • Shin, Se-Hyun;Yang, Yi-Jie;Suh, Jang-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.109-115
    • /
    • 2007
  • A new microchip-based aggregometer that uses a stirring-aided disaggregation mechanism in a microchip was developed to measure red blood cell (RBC) aggregation in blood and RBC suspensions. Conventional methods of RBC disaggregation, such as the rotational Couette system, were replaced with a newly designed stirring-induced disaggregation mechanism. Using a stirrer in a microchip, the aggregated RBCs stored in a microchip can be easily disaggregated. With an abrupt halt of the stirring, the backscattered light intensity can be measured in a microchip with respect to time. The time recording of the backscattered light intensity (syllectogram) shows an exponential decreasing curve representing the RBC aggregation. By analyzing the syllectogram, aggregation indices such as AI and M were determined. The results showed excellent agreement with LORCA. The essential feature of this design is the incorporation of a disposable microchip and the stirring-induced disaggregation mechanism.

Effect of Geometric Parameters in a Newly Designed Microchannel

  • Heo H. S.;Suh Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.121-122
    • /
    • 2003
  • In this study a microchannel with various arrangement of blocks is newly proposed. This design comprises periodically arranged simple blocks. In this configuration, the stirring is greatly enhanced at a certain geometric parameter set. To characterize the flow field and the stirring effect both the numerical and experimental methods were employed. To obtain the velocity field, three-dimensional numerical computation to the Navier Stokes equations are performed by using a commercial code, FLUENT 6.0. The fluid-flow solutions are then cast into studying the characteristics of stirring with the aid of Lyapunov exponent. The numerical results show that the particles' trajectories in the microchannel heavily depend on the block arrangement. It was shown that the stirring is significantly enhanced at larger block-height and it reaches maximum when the height is 0.8 times the channel width. We also studied the effect of the block stagger angle, and it turns out that the stirring performance is the best at the block angel ${45^\circ}$.

  • PDF

Effect of Mixing Shear on Flocculation of Anionic PAM and Cationic Starch Adsorbed PCC and Its Effect on Paper Properties (교반 속도가 음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘의 응집과 종이 물성에 미치는 영향)

  • Choi, Do-Chim;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.53-60
    • /
    • 2015
  • The effects of stirring speed during filler modification by dual polymers on flocculation and reflocculation of PCC (precipitated calcium carbonate) particles and its effect on handsheet properties were elucidated. PCC surface was modified by adsorbing A-PAM (anionic polyacrylamide) and C-starch (cationic starch) in series at various stirring speeds. It was found that increasing stirring speed during filler modification decreased the initial floc size of PCC. Continuous stirring with the same speed for filler modification resulted in the decrease of a floc size, eventually reached a steady state. The variations in a floc size was influenced by the stirring speed during filler modification: the lower the stirring speed during filler modification, the larger the floc size variations. Conclusively, the stability of PCC floc could be improved by increasing the stirring speed. In addition, the stirring speed influenced the handsheet properties. The smaller the PCC floc, the lower the strength of handseet. However, too much larger floc size also deteriorated paper strength. There exists an optimum floc size in term of paper strength which shall be controlled by stirring speed during filler modification.

Analysis of the Stokes Flow and Stirring Characteristics in a Staggered Screw Channel (엇갈림형 스크류 채널 내부의 스톡스 유동과 혼합특성 해석)

  • Suh Y. K.
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.55-63
    • /
    • 2004
  • The three-dimensional Stokes flow within a staggered screw channel is obtained by using a finite volume method. The geometry is intended to mimic the single screw extruder having staggered arrangement of flights. The flow solution is then subjected to the analysis of the stirring performance. In the analysis of the stirring performance, the stretching-mapping method developed by the author is employed for calculating the materials' stretching exponents, which are to be used in quantification of the mixing effect. The numerical results Indicate that the staggered geometry gives indeed far much better stirring-performance than the standard (nonstaggered) flight geometry. It was also shown that care must be given to the selection of the basis planes for evaluating the local stretching rate, and it turns out that the best method (H-method) has its basis plane just on the half way between the past and future evolution of fluid particles subjected to the defromation. In evaluating the stretching exponent, the expansion ratio must be considered which is one of the characteristic differences of the actual three-dimensional flows from the two-dimensionmal counterparts. The larger axial pressure-difference causes in general the smaller stirring performance while the flow rate is increased. The smaller channel length also increases the stirring performance.

The Effect of Electromagnetic Stirring on the Semi-Solid Microstructure of Cu-0.15wt%Zr Alloy (전자교반에 의한 Cu-0.5wt%Zr 합금의 반응고 조직제어에 관한 연구)

  • Lim, Sung-Chul;Lee, Heung-Bok;Kim, Kyung-Hoon;Kwon, Hyuk-Chon;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • Most of the work reported concerned the semi-solid processing of low melting point alloys, and in particular light alloys of aluminum and magnesium. The purpose of this paper is to develop a semi-solid microstructure of Cu alloys using electromagnetic stirring applicable for squirrel cage rotor of induction motor. The size of primary solid particle and the degree of sphericity as a function of the variation in cooling rate, stirring speed, and holding time were observed. By applying electromagnetic stirring, primary solid particles became finer and rounder relative to as-cast sample. As the input frequency increased from 30 to 40 Hz, particle size decreased. The size of primary solid particle was found to be decreased with increasing cooling rate. Also, it decreased with stirring up to 3 minutes but increased above that point. The degree of sphericity became closer to be 1 with hold time. Semi-solid microstructure of Cu alloys, one of the high melting point alloys, could be controlled by electromagnetic stirring.