• 제목/요약/키워드: Stirling

검색결과 252건 처리시간 0.026초

고온용 히트파이프형 태양열 흡수기 (High-Temperature Heat-Pipe Type Solar Thermal Receiver)

  • 부준홍;정의국
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.668-671
    • /
    • 2007
  • A numerical study was conducted on a simplified model of a high-temperature solar receiver which incorporates liquid-metal heat pipe. The objective of this paper is to compare the isothermal characteristics of the heat pipe receiver with the conventional receiver utilizing convection of molten salt as heat carrier. The solar receiver was assumed to be subject to a concentration ratio between 50 and 1,000 to supply high-temperature heat to a stirling engine for electric power generation. For simplicity of the analysis, a cylindrical geometry was assumed and typical dimensions were used based on available literature. The heat pipe had a shape of double-walled cavity and the working fluid was a sodium. The analysis was performed assuming that the radiation heat flux on the inner walls of the receiver was uniform, since the focus of this study was laid on the comparison of the conventional type and heat pipe type receiver. The results showed that the heat pipe type exhibited superior performance when the operating temperature becomes higher. In addition, to explore the advantage of the heat pipe receiver, the channel shape and dimensions should be adjusted to increase the heat transfer area between the wall and the heat trnasfer medium.

  • PDF

공진특성을 고려한 냉동/공조용 횡자속 선형압축기의 설계 (The Design of a Linear Compressor Based on the Resonance Characteristics for the Air Conditioner)

  • 홍용주;박성제;김효봉
    • 연구논문집
    • /
    • 통권34호
    • /
    • pp.39-46
    • /
    • 2004
  • The compressors in the air conditioner have the role of the pressurization and circulation of the refrigerant. The hermetic reciprocating compressors driven by rotary motor have been used for the air conditioner. The linear compressor has very simple structure and enhancement in the efficiency in comparison to that of conventional reciprocating compressor. The linear compressors are widely used for the small cryogenic refrigerator (below 1 kW), such as the Stirling refrigerator and pulse tube refrigerator. In the cryogenic application, the pressure ratio of the linear compressor is below 1.5, but the linear compressor for the air conditioner should overcome the high pressure ratio and the large pressure difference between the each sides of the piston. The resonance characteristics of the linear compressor has the significant impacts on the power consumption. To minimize the power consumption, the linear compressor should be operated at the resonance point. In the resonance characteristics, the role of the mechanical and gas spring should be considered. In present study, the cycle of the analysis of the vapor compression refrigeration cycle with the different refrigerants (R134a, R4l0a, R600a) and the designs of the linear compressor are performed. The effects of the stiffness of the mechanical spring on the electromagnetic forces would be discussed. Finally, the results show the design specification of the linear compressor for the air conditioner.

  • PDF

고온초전도 시스템의 새로운 냉각기술 (New Cooling Techniques of High Tc Superconductor Systems)

  • 장호명
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.7-11
    • /
    • 1999
  • The recent progress in new cooling techniques of the high Tc superconductor(HTS) systems is reported and discussed with some practical examples. At the beginning stage of the HTS development in research laboratories, liquid nitrogen(LN$_2$) is the standard medium for an effective cooling. The success of HTS in many different application areas, however, has required a variety of need in the cooling temperature and the cooling capacity with specific design restrictions. While the utilization of alternative liquid cryogens such as liquid neon (LNe) or liquid hydrogen (LH$_2$) has been tired in some of them, even solid cryogens such as solid nitrogen (SN$_2$) or solid hydrogen (SH$_2$) may be another option in special applications. The gaseous helium cooled by a cryogenic refrigerator has also been a good candidate in many cases. One of the best cooling methods for the HTS is the direct conduction-cooling by a closed-cycle refrigerator with no cryogen at all. The refrigeration may be based on Joul-Thomson, Brayton, Stirling, Gifford-McMahon, or pulse tube cycles. The pros and cons of the newly proposed cooling methods are described and some significant design issues are presented.

  • PDF

Cool-down test of cryogenic cooling system for superconducting fault current limiter

  • Hong, Yong-Ju;In, Sehwan;Yeom, Han-Kil;Kim, Heesun;Kim, Hye-Rim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.57-61
    • /
    • 2015
  • A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

Performance test of 100 W linear compressor

  • Ko, J.;Koh, D.Y.;Park, S.J.;Kim, H.B.;Hong, Y.J.;Yeom, H.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

CHARACTERIZATIONS OF PARTITION LATTICES

  • Yoon, Young-Jin
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.237-242
    • /
    • 1994
  • One of the most well-known geometric lattices is a partition lattice. Every upper interval of a partition lattice is a partition lattice. The whitney numbers of a partition lattices are the Stirling numbers, and the characteristic polynomial is a falling factorial. The set of partitions with a single non-trivial block containing a fixed element is a Boolean sublattice of modular elements, so the partition lattice is supersolvable in the sense of Stanley [6]. In this paper, we rephrase four results due to Heller[1] and Murty [4] in terms of matroids and give several characterizations of partition lattices. Our notation and terminology follow those in [8,9]. To clarify our terminology, let G, be a finte geometric lattice. If S is the set of points (or rank-one flats) in G, the lattice structure of G induces the structure of a (combinatorial) geometry, also denoted by G, on S. The size vertical bar G vertical bar of the geometry G is the number of points in G. Let T be subset of S. The deletion of T from G is the geometry on the point set S/T obtained by restricting G to the subset S/T. The contraction G/T of G by T is the geometry induced by the geometric lattice [cl(T), over ^1] on the set S' of all flats in G covering cl(T). (Here, cl(T) is the closure of T, and over ^ 1 is the maximum of the lattice G.) Thus, by definition, the contraction of a geometry is always a geometry. A geometry which can be obtained from G by deletions and contractions is called a minor of G.

  • PDF

콘덴서를 이용한 선형압축기 구동 전기회로 해석 (Analysis of electric circuit using capacitor for driving linear compressor)

  • 고준석;김효봉;박성제;홍용주;염한길;고득용
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권3호
    • /
    • pp.43-47
    • /
    • 2012
  • A linear compressor generates pulsating pressure and oscillating flow in a cryocooler such as Stirling cryocooler and pulse tube refrigerator. It is driven by AC power source and designed to operate at resonance of piston motion. The driving voltage level is determined by electric parameters of resistance, inductance and thrust constant of linear motor. From voltage equation on linear motor, the power factor of driving power is inherently less than 1. The phase difference between voltage and current of supplied power can be zero using capacitor and this can minimize a supply voltage level. Especially, the linear compressor of kW class requires high voltage and thus can cause a difficulty in selecting power supply unit due to limitation of voltage level. The capacitor in driving electric circuit is useful to settle this problem. In this study, the electric circuit of linear compressor is analytically investigated with assumption of mechanical resonance. The electric parameters of commercial linear motor are used in the analysis. The effects of capacitor on driving voltage level and power factor are investigated. From analytic results, it is shown that the voltage level can be mimized with using capacitor in driving electric circuit.

MIRIS 우주관측 카메라 Noise Test

  • 박영식;이대희;문봉곤;정웅섭;이창희;박성준;이덕행;표정현;남욱원;박장현;이승우;;한원용
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.126.2-126.2
    • /
    • 2011
  • MIRIS(Multipurpose InfraRed Imaging System)는 과학기술위성 3호의 주 탑재체이며 2012년 하반기 발사예정이다. MIRIS 우주관측 카메라는 0.9-2.0 ${\mu}m$ 영역에서 3.67 deg. x 3.67 deg. FOV로 우리 은하평면 survey 관측과 우주배경복사(CIB) 관측을 수행할 것이다. 현재 MIRIS는 비행모델 개발 마무리 단계에 있으며, 검교정 시험, 열-진공 시험, 진동 시험 등을 수행하고 나면 2011년 말 위성 본체와의 조립을 진행할 것이다. 망원경이 복사냉각(Passive Cooling)을 통해 200K 이하로 냉각되면, dewar에 설치된 소형 냉각기를 가동하여 적외선 센서를 90K 정도로 냉각한다. MIRIS 우주관측카메라에는 PICNIC($256{\times}256$ pixel) 센서를 사용하였고, 상온과 냉각된 상태에서의 노이즈 특성을 측정하였다. PICNIC 센서와 dewar내부를 냉각하기 위해 RICOR사의 K-508 micro stirling cooler를 사용하는데, cooler가 동작하면서 전자부에 영향을 주어 주된 잡음으로 나타남을 확인하였다. Cooler에서 발생하는 잡음을 최소화 하기위해 fanout B/D와 LVPS 부분을 개선하였으며, 본 발표에서는 잡음 측정 결과에 대해 논의 하고자 한다.

  • PDF

Pulse Tube Cryopump 상용화 공정 기술 개발

  • 강상백;노영호;유재경;고득용;박성제;고준석;인상렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2013
  • 현재 크라이오펌프의 주요 관심기술은 생산성 향상을 위한 급속 재생기술의 확보와 극저온 냉동기의 효율 향상 기술 및 저진동 기술의 확보이다. 크라이오펌프는 크게 냉동기 모듈과 펌프모듈로 구성되고, 냉동기 모듈은 주로 G-M 극저온 냉동기, Stirling 극저온 냉동기 또는 맥동관 극저온 냉동기 등을 사용하는데, 이것은 주로 압축기, 왕복기, 재생기, 구동장치 등으로 펌프모듈은 cryoarray와 펌프 body로 구성된다. 최근에 구조가 간단하고 장수명 및 저진동의 장점을 가진 맥동관 극저온 냉동기의 효율이 급속히 증가함에 따라 초전도, 액화 등의 분야에서 기존의 G-M 극저온 냉동기를 대체하는 추세이다. 본 연구에서는 지식경제부 제조기반산업원 천기술사업 "급속재생형 저진동 크라이오펌프 개발" 사업을 통해 급속 재생, 저진동, 고신뢰성 확보를 위해 기존의 G-M 극저온 냉동기를 맥동관 극저온 냉동기로 대체 적용 개발 및 국산화를 도모하고자 한다. 또한 상용화에 따른 공정 개발을 소개하고자 한다.

  • PDF

Investigation on Effective Operational Temperature of HTS Cable System considering Critical Current and AC loss

  • Kim, Tae-Min;Yim, Seong-Woo;Sohn, Song-Ho;Lim, Ji-Hyun;Han, Sang-Chul;Ryu, Kyung-Woo;Yang, Hyung-Suk
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.307-310
    • /
    • 2016
  • The operational cost for maintaining the superconductivity of high-temperature superconducting (HTS) cables needs to be reduced for feasible operation. It depends on factors such as AC loss and heat transfer from the outside. Effective operation requires design optimization and suitable operational conditions. Generally, it is known that critical currents increase and AC losses decrease as the operational temperature of liquid nitrogen ($LN_2$) is lowered. However, the cryo-cooler consumes more power to lower the temperature. To determine the effective operational temperature of the HTS cable while considering the critical current and AC loss, critical currents of the HTS cable conductor were measured under various temperature conditions using sub-cooled $LN_2$ by Stirling cryo-cooler. Next, AC losses were measured under the same conditions and their variations were analyzed. We used the results to select suitable operating conditions while considering the cryo-cooler's power consumption. We then recommended the effective operating temperature for the HTS cable system installed in an actual power grid in KEPCO's 154/22.9 kV transformer substation.