• 제목/요약/키워드: Stir-zone

검색결과 89건 처리시간 0.028초

THE EVALUATION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDEDAL-MG-SI ALLOY

  • Lee, Won-Bae;Yeon, Yun-Mo;Jung, Seung-Boo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.499-504
    • /
    • 2002
  • The microstructural change associated with the hardness profile in friction stir welded, age-hardenable 6005 Al alloy had been evaluated. Frictional heat and plastic flow during friction stir welding created the fine recrystallized grain (Stir Zone, SZ), the elongated and recovered grain (Thermo-Mechanical Affected Zone, TMAZ) in the weld zone. Heat affected zone (HAZ), which could be only identified by hardness test because there is no difference in the grain structure compared with that of the base metal, was formed beside the weld zone. A softened region had been formed near the weld zone during friction stir welding process. The softened region was characterized by the dissolution and coarsening of the strengthening precipitate during the friction stir welding. The sound joints of 6005 Al alloys were successfully formed under a wide range of the friction stir welding conditions.

  • PDF

마찰교반용접한 AZ31B-H24 마그네슘 합금의 용접특성에 미치는 용접조건의 영향 (The Effects of Welding Conditions on the Joint Properties of the Friction Stir Welded AZ31B-H24 Mg Alloys)

  • 이원배;방극생;연윤모;정승부
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.87-92
    • /
    • 2002
  • Weldability of Friction Stir Welded(FSW) AZ31B-H24 Mg alloy sheet with 4m thick was evaluated by changing welding speed. The sound welding conditions mainly depended on the suffiicient welding heat input during the process. The insufficient heat input resulted in the void like defect in the weld zone. Higher welding speed caused a larger inner void or lack of bonding. The defects were distributed at the stir zone or the transition region between stir zone and thermo-mechanical affected zone (UE). The size of defects slightly increased with increasing welding speed. These defects had a great effect on the joint strength of weld zone. The weld zone was composed of stir zone, TMAZ and heat affected zone. The stir zone was cosisted of fine recrystallized structure with $5-8\mu\textrm{m}$ in the mean grain size. The hardness of weld zone was near the 60HV, which was slightly lower than that of base metal. The maximum joint strength was about 219MPa that was 75% of that of base metal and the yield strength was also lower than that of base metal partly due to the existance of defects.

용접조건이 AI-7075-T651의 마찰교반용접부의 경도와 미세조직에 미치는 영향 (Effects of Welding Condition on Hardness and Microstructure of Friction Stir Welded Joints of AI-7075-T651 Plate)

  • 김치옥;손혜정;김선진
    • 동력기계공학회지
    • /
    • 제15권3호
    • /
    • pp.58-64
    • /
    • 2011
  • As well known, the friction stir welding is a novel welding process which is a solid state welding process for sheet or plate using the friction stir phenomenon. This paper describes the effect of welding condition such as the rotation speed and the travelling speed during the friction stir welding process on the micro Virkers hardness and the microstructure of friction stir welded joints in AI-7075-T651 plate. From those investigations, the highest hardness of stir zone was observed at the welding condition of SO-3. The microstructures of the friction stir welded joints was not dependent on the welding conditions, but in the SO-4 specimen, the friction stir welding defect like tunnel shape was found in stir zone.

5052 알루미늄 합금 마찰교반접합부 특성에 미치는 접합인자의 영향 (Effect of Welding Parameters on the Friction Stir Weldability of 5052 Al alloy)

  • 이원배;김상원;이창용;연윤모;장웅성;서창제;정승부
    • Journal of Welding and Joining
    • /
    • 제22권3호
    • /
    • pp.69-76
    • /
    • 2004
  • Effects of friction stir welding parameters such as tool rotation speed and welding speed on the joints properties of 5052 Al alloys were studied in this study. A wide range of friction stir welding conditions could be applied to join 5052 AA alloy without defects in the weld zone except for certain welding conditions with a lower heat input. Microstructures near the weld zone showed general weld structures such as stir zone (SZ), thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Each zone showed the dynamically recrystallized grain, transient grain and structure similar to base metal's, respectively. Hardness distribution near the weld zone represented a similar value of the base metal under wide welding conditions. However, in case of 800 rpm of tool rotation speed, hardness of the stir zone had a higher value due to the fine grain with lots of dislocation tangle, a higher angle grain boundary and some of Al3Fe particles. Except joints with weld defects, tensile strength and elongation of the joints had values similar to the base metal values and fracture always occurred in the regions approximately 5mm away from the weld center.

Al 7075의 마찰교반 용접부 미세조직에 관한 연구 (Microstructures in friction-stir welded Al 7075-T651 alloy)

  • 장석기;이돈출;김성종;전정일
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.331-338
    • /
    • 2005
  • The grain structure, dislocation density and second phase particles in various regions including the stir zone(SZ), thermo-mechanically affected zone(TMAZ), and heat affected zone(HAZ) of a friction stir weld 6.35mm thick aluminum 7075-T651 alloy were investigated and compared with the base metal. The microstruectures of nugget zone were compared according to tool rotation speeds and tool transition speeds. The hardness profiles of nugget zone were increased, while decreasing rotation speed and increasing welding speed. The optimal microstructure was gained at the low rotation speed 800rpm and th high welding speed 124mm/min. The nugget microstructures of fracture surface, transgranular dimple and quasicleavage type were showed different fracture type with the HAZ, shear fracture type.

  • PDF

DISSIMILAR FRICTION-STIR WELDING OF ALALLOY 1050 AND MGALLOY AZ31

  • Park, Seung Hwan C.;Masato Michiuchi;Yutaka S. Sato;Hiroyuki Kokawa
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.534-538
    • /
    • 2002
  • Dissimilar friction stir welding of aluminum (AI) alloy 1050 and magnesium (Mg) alloy AZ31 was successfully done in the limited welding parameters. The dissimilar weld showed good quality and facility compared to conventional fusion weld. Transverse cross section perpendicular to the welding direction had no defects. The weld was divided into base material of Al alloy, an irregular shaped stir zone and base material of Mg alloy. The irregular shaped stir zone was roughly located around the initial weld center. The weld interface near plate surface shifted from initial weld centerline to the advancing side. Hardness profile of the weld was heterogeneous, and the hardness value of the stir zone was raised to about 150 Hv to 250 Hv. The mixed phase was identified to intermetallic compound $Mg_{17}$Al$_{12}$ using x-ray diffraction method, energy dispersive x-ray spectroscopy (EDX) and electron probe micro analysis (EPMA). The formation of intermetallic compound $Mg_{17}$Al$_{12}$ during FSW causes the remarkable increase in hardness value in the stir zone.one.

  • PDF

마찰교반공정을 통한 강재의 개질 영역에서의 미세조직에 미치는 합금원소의 영향 (Effect of Alloy Elements on Microstructure of Modified Area via Friction Stir Process in Steel Materials)

  • 김상혁;이광진;우기도
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.370-375
    • /
    • 2015
  • In this study, to confirm the effect of alloying elements on the phase transformation and conditions of the friction stir process, we processed two materials, SS400 and SM45C steels, by a friction stir process (FSP) under various conditions. We analyzed the mechanical properties and microstructure of the friction stir processed zone of SS400 and SM45C steels processed under 400RPM - 100mm/min conditions. We detected no macro (tunnel defect) or micro (void, micro crack) defects in the specimens. The grain refinement in the specimens occurred by dynamic recrystallization and stirring. The microstructure at the friction stir processed zone of the SS400 specimen consisted of an ${\alpha}$-phase. On the other hand, the microstructure at the friction stir processed zone of the SM45 specimen consisted of an ${\alpha}$-phase, $Fe_3C$ and martensite due to a high cooling rate and high carbon content. Furthermore, the hardness and impact absorption energy of the friction stir processed zone were higher than those of base metals. The hardness and impact absorption energy of FSPed SM45C were higher than that of FSPed SS400. Our results confirmed the effect of alloying elements on the phase transformation and mechanical properties of the friction stir processed zone.

겹치기 마찰교반접합된 Invar 42/SS 400 합금의 미세조직과 기계적 특성 발달 (Development of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Invar 42/SS 400)

  • 송국현
    • Journal of Welding and Joining
    • /
    • 제30권5호
    • /
    • pp.34-39
    • /
    • 2012
  • This study was conducted to investigate the microstructure and mechanical properties of friction stir lap joints. Invar 42 and SS 400 were selected as the experimental materials, and friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. The application of friction stir welding to Invar 42 effectively reduced the grain size in the stir zone; the average grain size of Invar 42 was reduced from $11.5{\mu}m$ in the base material to $6.4{\mu}m$ in the stir zone, which resulted in an improvement in the mechanical properties of the stir zone. The joint interface between Invar 42 and SS 400 showed a relatively sound weld without voids and cracks, and the intermetallic compounds with $L1_2$ type in lap jointed interface were partially formed with size of 100 nm. Moreover, the hook in the advancing side of Invar 42 was formed from SS 400, which contributed to maintenance of the tensile strength. The evolution of microstructures and mechanical properties of friction stir lap jointed Invar 42 and SS 400 are also discussed herein.

마찰교반접합프로세스를 응용한 알루미늄합금의 결정립미세화 (Application of Friction Stir Welding Process to Grain Refinement of Aluminum Alloys)

  • 권용재
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 추계학술발표대회 개요집
    • /
    • pp.253-255
    • /
    • 2003
  • Commercially pure 1050 aluminum alloy with ultra-fine grain sizes was produced by a friction stir process. The maximum temperature in the friction stir processed zone decreased almost linearly with the tool rotation speed. In the friction stir processed zone, dislocation density was very low and fine equiaxed grains were observed. The grain size decreased with tool rotation speed. It is noteworthy that, for 560 rpm, a grain size decreased to even the submicron level with only the single pass of friction stir process. These fine grains resulted in improvement in hardness of the friction stir processed zone.

  • PDF

선급용 고장력강 FSW접합부의 미세조직 및 기계적 성질 (Microstructures and Mechanical Properties of Friction Stir Welded High Strength Steels far Shipbuilding)

  • 장웅성;최기용
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.67-73
    • /
    • 2002
  • In an attempt to evaluate the feasibility of friction stir welding(FSW) for joining carbon steels, microstructures and mechanical properties of friction stir welded carbon steels with different grain structures were investigated. In comparison of O-type stir zone(SZ) appeared in various aluminium alloys, configuration of SZ in friction stir welded carbon steels displayed U-type. Plastically deformed pearlite band structure was identified to surround the SZ, indicating the existence of so-called thermo-mechanically affected zone(TMAZ). However, the TMAZ of carbon steels was much narrower than that of Al alloys. The microstructures of both stir zone and TMAZ revealed bainite matrix in a conventional carbon steel for shipbuilding, while, in the same region, ferrite matrix microstructures were formed in a low carbon fine grained steel. The conventional carbon steel showed superior stirring workability to that of the fine grained carbon steel. The yield and tensile strength of the friction stir welded joints were comparable to those of the base metals, and the elongation in welded joints demonstrated excellent ductility. Absorbed energy in SZ of the fine grained carbon steel was ten times higher than that obtained from conventional submerged arc weld metal of the same steel. Based on these results, the application FSW to carbon steels was found to be feasible.