• 제목/요약/키워드: Stimulation parameter

검색결과 73건 처리시간 0.032초

경부미주신경의 전기자극에 의한 지속성 심박반응 및 이의 심전도적 고찰 (The Prolonged Heart Rate Responses to Electrical Stimulation of Vagus Nerve in Dogs)

  • 신홍기;김기순
    • The Korean Journal of Physiology
    • /
    • 제6권2호
    • /
    • pp.31-37
    • /
    • 1972
  • The right cervical vagus nerve was electrically stimulated for 30 sec, and 30 minutes recording cardiac rate responses and electrocardiogram. The main purposes of the present experiment are to determine effect of stimulation frequency on the maintenance of cardiac rate responses and to determine recovery time of sinus rhythm after asystole period followed by idioventricular rhythm during prolonged electrical stimulation of the vagus, and the optimal stimulation parameters for vagal stimulation were studied as well. The results obtained are summarized as follows: 1. The maximum negative chrontropic responses were obtained with the following ranges of electrical parameters. Intensity: 3V-7V, Frequency: 20/sec-60/sec, and pulse duration: 5 msec-20 msec. 2. Compared with the responses from sympathetic effectors, cardiac rate responses to electrical stimulation of vagus nerve were well maintained with all stimulation frequencies. 3. At all stimulation frequencies except 20/sec, sinus node started to take over primary pacemaker activity when cardiac rates were restored to about 38-40/min. 4. It was indicated that upper limit of idioventricular rhythm does not exceed 38-40/min. 5. With the stimulation parameter set of 20/sec-5 msec-3 V, sinus rhythm did not appear during 30 minutes of stimulation period. Therefore, this electrical parameter set appears to be optimal for elicitation of prolonged and maximum cardiac rate responses by vagal stimulation.

  • PDF

Fully Implantable Deep Brain Stimulation System with Wireless Power Transmission for Long-term Use in Rodent Models of Parkinson's Disease

  • Heo, Man Seung;Moon, Hyun Seok;Kim, Hee Chan;Park, Hyung Woo;Lim, Young Hoon;Paek, Sun Ha
    • Journal of Korean Neurosurgical Society
    • /
    • 제57권3호
    • /
    • pp.152-158
    • /
    • 2015
  • Objective : The purpose of this study to develop new deep-brain stimulation system for long-term use in animals, in order to develop a variety of neural prostheses. Methods : Our system has two distinguished features, which are the fully implanted system having wearable wireless power transfer and ability to change the parameter of stimulus parameter. It is useful for obtaining a variety of data from a long-term experiment. Results : To validate our system, we performed pre-clinical test in Parkinson's disease-rat models for 4 weeks. Through the in vivo test, we observed the possibility of not only long-term implantation and stability, but also free movement of animals. We confirmed that the electrical stimulation neither caused any side effect nor damaged the electrodes. Conclusion : We proved possibility of our system to conduct the long-term pre-clinical test in variety of parameter, which is available for development of neural prostheses.

Jastreboff 이명 모델에서의 ABR과 ECochG 신호분석을 통한 전기자극의 효과 (Effect of Electrical Stimulation using ABR and ECochG Analysis based on Jastreboff Tinnitus Mocel)

  • 임재중;김경식;김남균;전병훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권4호
    • /
    • pp.471-477
    • /
    • 1999
  • 전기자극을 이용한 청각시스템의 진단 및 치료방법에 대하여 많은 연구가 수행되어 왔으나 전기자극이 청각 시스템을 통하여 전달되어지는 과정에 대한 이해가 부족하였기 때문에 표준화된 방법이나 이론적인 배경이 없이 자극조건이 선택되어져 왔다. 따라서 본 연구에서는 실험동물에 이명을 유발시킨 상태에서 전기자극이 어떠한 영향을 미치는 가를 ABRrhk ECochG의 변화를 통해서 관찰하고자 한다. 본 연구에서는 9마리의 guinea pig를 Jastreboff 이명 유발 모델에 다라 salicylate를 이용하여 이명을 유발시킨후 전기자극을 가한 5마리를 실험군(A) 으로하고, 대조군(B)으로는 전기자극을 가하지 않은 4마리의 guinea pig를 대상으로 실험을 실시하였다. 실험조건은 이명유발 이전과 이명유발 1시간, 6시간, 12시간 후로 구분하였고, 각 실험조건에서 ABR과 ECochG를 검출하여 각 파형을 rms 값을 기준으로 정규화한 후 자기상관계수를 계산하여 전기자극을 인가하였을 때의 값들의 변화를 관찰하였다. 그 결과 ABR의 경우에는 이명이 유발된 상태에서 6시간 이후의변수 갑싱 급격히 증가하였다가 12시간이 되면서 최초의 상태로 돌아가고, 전기자극을 인가하였을 때는 이명유발 이전 상태에서의 값을 계속 유지하고 있었다. 그리고, ECochG의 경우에는 전기자극의 효과가 12시간 이후에 나타남을 확인하였다. 즉, 본 실험을 통하여 이명유발 모델에 전기자극을 인가하였을 때의 효과를 ABR과 ECochG 상관분석을 통하여 확인하였다.

  • PDF

기능적 전기자극을 위한 근골격계 모델 개발 - 무릎관절에서의 근골격계 모델 특성치의 비침습적 추정 - (Development of a Musculoskeletal Model for Functional Electrical Stimulation - Noninvasive Estimation of Musculoskeletal Model Parameters at Knee Joint -)

  • 엄광문
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권3호
    • /
    • pp.293-301
    • /
    • 2001
  • A patient-specific musculoskeletal model, whose parameters can be identified noninvasively, was developed for the automatic generation of patient-specific stimulation pattern in FES. The musculotendon system was modeled as a torque-generator and all the passive systems of the musculotendon working at the same joint were included in the skeletal model. Through this, it became possible that the whole model to be identified by using the experimental joint torque or the joint angle trajectories. The model parameters were grouped as recruitment of muscle fibers, passive skeletal system, static and dynamic musculotendon systems, which were identified later in sequence. The parameters in each group were successfully estimated and the maximum normalized RMS errors in all the estimation process was 8%. The model predictions with estimated parameter values were in a good agreement with the experimental results for the sinusoidal, triangular and sawlike stimulation, where the normalized RMS error was less than 17%, Above results show that the suggested musculoskeletal model and its parameter estimation method is reliable.

  • PDF

Basic Understanding of Transcutaneous Electrical Nerve Stimulation

  • Jung, Jae-Kwang;Byun, Jin-Seok;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • 제41권4호
    • /
    • pp.145-154
    • /
    • 2016
  • Transcutaneous electrical nerve stimulation (TENS) is one of the representative physiotherapical modalities used for the treatment of various musculoskeletal disorders by the application of electrical stimuli. In dental practice, it has long been used in the treatment of acute and chronic orofacial pain conditions including temporomandibular disorders. TENS is the delivery of therapeutic electrical stimuli with a variety of electrical intensity, frequency and duration to stimulate peripheral nerve through surface electrodes with various form and placement. While controversy still remains over the clinical effectiveness and application of TENS, basic understanding of its electrical properties and the expected biological reactions is important to increase the therapeutic effect and decrease the risk of possible side effects. This review, therefore, focuses on basic understanding of TENS including its underlying mechanisms and stimulation parameters.

Transcutaneous Electrical Nerve Stimulation System for Treating Tinnitus based on the Cortex-M4 Microcontroller

  • Lee, Jaeung;Yeom, Hojun
    • International journal of advanced smart convergence
    • /
    • 제5권4호
    • /
    • pp.10-14
    • /
    • 2016
  • Among the methods of treating tinnitus, the transcutaneous clectrical nerve stimulation (TENS) method of treating by electrical stimulation is common. However, there is a problem that surgical operation is required to stimulate the vagus nerve (VN) main trunk near most of the bronchus. Alternatively, we found that the same effect could be achieved by electrically stimulating the vagus nerve VN branch (Arnold's nerve) distributed in the outer ear. The TENS system for stimulation of vagus nerve has been developed, but it has not been able to implement to stimulate as a parameter optimized for the patient by simultaneously playing the sound of eliminating the tinnitus frequency. Therefore, in this paper, it is important to develop a safe and practical TENS device for tinnitus treatment based on a 32-bit microprocessor that simultaneously applies non-invasive and notched sounds and to develop optimal treatment methods for treating tinnitus.

세포 및 동물모델용 펄스형 전자기장 자극 파라미터 가변장치 설계 및 평가 (Design and Evaluation of Pulsed Electromagnetic Field Stimulation Parameter Variable System for Cell and Animal Models)

  • 이자우;박창순;김준영;이용흠
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권1호
    • /
    • pp.11-18
    • /
    • 2022
  • An electromagnetic generator with variable stimulation parameters is required to conduct basic research on magnetic flux density and frequency for pulsed electromagnetic fields (PEMFs). In this study, we design an electromagnetic generator that can conduct basic research by providing parameters optimized for cell and animal experimental conditions through adjustable stimulation parameters. The magnetic core was selected as a solenoid capable of uniform and stable electromagnetic stimulation. The solenoid was designed in consideration of the experimental mouse and cell culture dish insertion. A voltage and current adjustable power supply for variable magnetic flux density was designed. The system was designed to be adjustable in frequency and pulse width and to enable 3-channel output. The reliability of the system and solenoid was evaluated through magnetic flux density, frequency, and pulse width measurements. The measured magnetic flux density was expressed as an image and qualitatively observed. Based on the acquired image, the stimulation area according to the magnetic flux density decrease rate was extracted. The PEMF frequency and pulse width error rates were presented as mean ± SD, and were confirmed to be 0.0928 ± 0.0934% and 0.529 ± 0.527%, respectively. The magnetic flux density decreased as the distance from the center of the solenoid increased, and decreased sharply from 60 mm or more. The length of the magnetic stimulation area according to the degree of magnetic flux density decrease was obtained through the magnetic flux density image. A PEMF generator and stimulation parameter control system suitable for cell and animal models were designed, and system reliability was evaluated.

경피(經皮) 전기자극(電氣刺戟)을 파형(波形) 파라메터에 관한 연구(硏究) (A Study on Waveform Parameter for the Electrotactile Stimulation)

  • 함광근;민홍기;이호재;허웅
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1992년도 춘계학술대회
    • /
    • pp.198-202
    • /
    • 1992
  • In this paper, we have performed an experiment to obtain an optimized electric stimulation condition on the tip or a ringer skin. The desired parameters for stimulation of the finger tip skin are waveforms, frequency, stimulation intensity, duty cycle. As a result, when the finger skin was stimulated with monophasic, biphasic, and differntial phasic, the most appropriate condition was 200 to 250[Hz] in frequency, 10 to 25[%] in duty cycle. Burst type pulse was more sensitive effect than that of continuous pulse methode.

  • PDF

전기자극이 체성분에 미치는 효과 (The Effect of Electrical Stimulation of Body Composition in Obese Person)

  • 김용성;방상분
    • 대한임상전기생리학회지
    • /
    • 제2권3호
    • /
    • pp.13-24
    • /
    • 2004
  • The purpose of this study is to reveal the effect of electrical stimulation of body composition in obese person. Subjects were 30s to 40s aged healthy workers(2004. 3. 8~4. 17) in the S general Hospital in Suwon and they were brought to manage obesity. Subjects were divided into control group(Female<0.85, Male<0.90) and study group(Female>0.85, Male>0.90) by WHR(waist-hip ratio) that is measured by Automatic body composition analyzer(InBody 3.0). And we divided the study group with randomized methods into group A(n=8) and group B(n=8). Then we compared and analyzed the change of muscle mass, body fat, abdominal girth, WHR, BMI(body mass index) after application of electrical stimulation, three times a week, for 30 minutes in each session with 50 Hz of pulse frequency, $20\;{\mu}s$ or $250\;{\mu}s$ of pulse duration. There was statistically meaningful decrement of body fat(p<0.05) and abdominal girth(p<0.05) but not of body weight, muscle mass, WHR and BMI in the control group after application of electrical stimulation with 50 Hz, $20\;{\mu}s$. There were meaningful change of abdominal girth(p<0.05), WHR(p<0.05) and BMI(p<0.05), but not of body weight, muscle mass and body fat after application of electrical stimulation with 50 Hz, $20\;{\mu}s$ in group A. We applied electrical stimulation with 50 Hz, $250\;{\mu}s$ in group B, then there were meaningful change of body weight(p<0.05), body fat(p<0.01), abdominal girth(p<0.01), WHR(p<0.05) and BMI(p<0.01) but not of muscle mass only. Consequently, the pulse duration is the main parameter of electrical stimulation that affect the body composition of obese person in this study and if we combined the diet control to reduce blood components we could have better result. So it would be more effective to manage localized obesity(in abdomen, thigh, upper arm, etc.) if you apply electrical stimulation considering the pulse duration.

  • PDF

근전도, 초음파와 DITI를 이용한 전기자극의 성인여성 복부비만 개선 효과 관찰 (The Effects of Functional Electrical Stimulation on Abdominal Obesity Improvement of Adult Women by EMG, Ultrasound and DITI)

  • 이현주;태기식
    • 한국정밀공학회지
    • /
    • 제31권11호
    • /
    • pp.1051-1058
    • /
    • 2014
  • In this study, we investigated the improvement effect of obesity by treatment with a developed low frequency electrical stimulation system. Thirty female in their 20's as an experiment subjects divided 3 groups(control, commercialized device, developed device) were treated with electrical stimulation on abdomen for 4 weeks. The body weight, body mass index(BMI), waist-hip ratio(WHR), muscle strength, muscle(transverse abdominis(TrA), internal obliquus abdominis(IO), external obliquus abdominis(EO)), fat thickness and abdominal surface temperature were measured by electromyogram(EMG), ultrasound and digital infrared thermal image(DITI). In the result, the body weight and BMI were decreased. Subcutaneous abdominal fat were significantly reduced after 4 weeks. The muscle strength and TrA muscle thickness was increased 13.2%(p<0.05), and 35.5%, respectively. The fat thickness showed decrease in abdomen (p<0.05). Infrared measurement on abdominal surface temperature as a parameter of improvement in blood circulation was significantly increased(p<0.05). Therefore, the low frequency stimulation showed positive effects on parameters of the obesity improvement.