• 제목/요약/키워드: Stiffness-Based Optimization

검색결과 197건 처리시간 0.023초

Conceptual design of ultra-high performance fiber reinforced concrete nuclear waste container

  • Othman, H.;Sabrah, T.;Marzouk, H.
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.588-599
    • /
    • 2019
  • This research presents a structural design of high-level waste (HLW) container using ultra-high performance fiber reinforced concrete (UHP-FRC) material. The proposed design aims to overcome the drawbacks of the existing concrete containers which are heavy, difficult to fabricate, and expensive. In this study, the dry storage container (DSC) that commonly used at Canadian Nuclear facilities is selected to present the proposed design. The design has been performed such that the new UHP-FRC alternative has a structural stiffness equivalent to the existing steel-concrete-steel container under various loading scenarios. Size optimization technique is used with the aim of maximizing stiffness, and minimizing the cost while satisfying both the design stresses and construction requirements. Then, the integrity of the new design has been evaluated against accidental drop-impact events based on realistic drop scenarios. The optimization results showed: the stiffness of the UHP-FRC container (300 mm wall thick) is being in the range of 1.35-1.75 times the stiffness of existing DSC (550 mm wall thick). The use of UHP-FRC leads to decrease the container weight by more than 60%. The UHP-FRC container showed a significant enhancement in performance in comparison to the existing DSC design under considered accidental drop impact scenarios.

군집지능과 모델개선기법을 이용한 구조물의 결함탐지 (Structural Damage Detection Using Swarm Intelligence and Model Updating Technique)

  • 최종헌;고봉환
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.884-891
    • /
    • 2009
  • This study investigates some of swarm intelligence algorithms to tackle a traditional damage detection problem having stiffness degradation or damage in mechanical structures. Particle swarm(PSO) and ant colony optimization(ACO) methods have been exploited for localizing and estimating the location and extent damages in a structure. Both PSO and ACO are population-based, stochastic algorithms that have been developed from the underlying concept of swarm intelligence and search heuristic. A finite element (FE) model updating is implemented to minimize the difference in a set of natural frequencies between measured and baseline vibration data. Stiffness loss of certain elements is considered to simulate structural damages in the FE model. It is numerically shown that PSO and ACO algorithms successfully completed the optimization process of model updating in locating unknown damages in a truss structure.

조립성을 고려한 위상 최적설계법 개발 (Structural Layout Optimization Strategy Considering Assemblage)

  • 최국진;김명진;김윤영;장강원
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.512-519
    • /
    • 2006
  • In the ground-structure-based topology optimization, beam elements are regarded to be rigidly connected to each other, and joints are assumed to have infinite stiffness. Thus the optimized topology of a structure is obtained according to the assumption of no joint effect, and the resulting structure should be manufactured in one piece if the joint effect is to be excluded as much as possible. The underlying problems are that 1) the performance of the structure might be seriously decreased if the members of the structure are connected through welding or bolting, not manufactured in one piece, and 2) the topology of the structure will be changed if the joint effect is taken into account. In the paper, the assemblage issue is considered on topology optimization, and a new formulation based on the joint stiffness-varied ground beam structure is developed. Joints of a beam structure are modeled by elastic spring elements whose stiffnesses are controlled by design variables during the optimization.

Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings

  • Huang, M.F.;Chan, C.M.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • 제14권6호
    • /
    • pp.559-582
    • /
    • 2011
  • This paper presents an integrated wind-induced dynamic analysis and computer-based design optimization technique for minimizing the structural cost of general tall buildings subject to static and dynamic serviceability design criteria. Once the wind-induced dynamic response of a tall building structure is accurately determined and the optimal serviceability design problem is explicitly formulated, a rigorously derived Optimality Criteria (OC) method is to be developed to achieve the optimal distribution of element stiffness of the structural system satisfying the wind-induced drift and acceleration design constraints. The effectiveness and practicality of the optimal design technique are illustrated by a full-scale 60-story building with complex 3D mode shapes. Both peak resultant acceleration criteria and frequency dependent modal acceleration criteria are considered and their influences on the optimization results are highlighted. Results have shown that the use of various acceleration criteria has different implications in the habitability evaluations and subsequently different optimal design solutions. The computer based optimization technique provides a powerful tool for the lateral drift and occupant comfort design of tall building structures.

정강성을 고려한 5축 복합가공기의 리브 구조 최적설계 (Design Optimization of the Rib Structure of a 5-Axis Multi-functional Machine Tool Considering Static Stiffness)

  • 김승기;김지훈;김세호;윤재웅
    • 한국생산제조학회지
    • /
    • 제25권5호
    • /
    • pp.313-320
    • /
    • 2016
  • The need for high-strength, multi-axis, and multi-functional machine tools has recently increased because of part complexity and workpiece strength. However, most of the machine tool manufacturers rely on experience for a detailed design because of the shortcomings in the existing design technology. This study uses a topology optimization method to more effectively design a large multi-functional machine tool considering static stiffness. The ram, saddle, and column parts are important structures in a machine tool. Hence, they are selected for the finite element method analysis. Based on this analysis, the optimized internal rib structure for those parts is designed for desirable rigidity and weight. This structure could possibly provide the required design technology for machine tool manufacturers.

Analysis of system dynamic influences in robotic actuators with variable stiffness

  • Beckerle, Philipp;Wojtusch, Janis;Rinderknecht, Stephan;von Stryk, Oskar
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.711-730
    • /
    • 2014
  • In this paper the system dynamic influences in actuators with variable stiffness as contemporary used in robotics for safety and efficiency reasons are investigated. Therefore, different configurations of serial and parallel elasticities are modeled by dynamic equations and linearized transfer functions. The latter ones are used to identify the characteristic behavior of the different systems and to study the effect of the different elasticities. As such actuation concepts are often used to reach energy-efficient operation, a power consumption analysis of the configurations is performed. From the comparison of this with the system dynamics, strategies to select and control stiffness are derived. Those are based on matching the natural frequencies or antiresonance modes of the actuation system to the frequency of the trajectory. Results show that exclusive serial and parallel elasticity can minimize power consumption when tuning the system to the natural frequencies. Antiresonance modes are an additional possibility for stiffness control in the series elastic setup. Configurations combining both types of elasticities do not provide further advantages regarding power reduction but an input parallel elasticity might enable for more versatile stiffness selection. Yet, design and control effort increase in such solutions. Topologies incorporating output parallel elasticity showed not to be beneficial in the chosen example but might do so in specific applications.

강도 및 강성 조건을 고려한 탄소섬유강화플라스틱(CFRP) 로어 컨트롤 아암의 치수 최적설계 (Sizing Optimization of CFRP Lower Control Arm Considering Strength and Stiffness Conditions)

  • 임주희;도재혁;유상혁;강오성;강건욱;이종수
    • 한국CDE학회논문집
    • /
    • 제21권4호
    • /
    • pp.389-396
    • /
    • 2016
  • The necessity for environment-friendly material development has emerged in the recent automotive field due to stricter regulations on fuel economy and environmental concerns. Accordingly, the automotive industry is paying attention to carbon fiber reinforced plastic (CFRP) material with high strength and stiffness properties while the lightweight. In this study, we determine a shape of lower control arm (LCA) for maximizing the strength and stiffness by optimizing the thickness of each layer when the stacking angle is fixed due to the CFRP manufacturing problems. Composite materials are laminated in the order of $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, and $-45^{\circ}$ with a symmetrical structure. For the approximate optimal design, we apply a sequential two-point diagonal quadratic approximate optimization (STDQAO) and use a process integrated design optimization (PIDO) code for this purpose. Based on the physical properties calculated within a predetermined range of laminate thickness, we perform the FEM analysis and verify whether it satisfies the load and stiffness conditions or not. These processes are repeated for successive improved objective function. Optimized CFRP LCA has the equivalent stiffness and strength with light weight structure when compared to conventional aluminum design.

Diagrid Structural System for High-Rise Buildings: Applications of a Simple Stiffness-based Optimized Design

  • Gerasimidis, Simos;Pantidis, Panos;Knickle, Brendan;Moon, Kyoung Sun
    • 국제초고층학회논문집
    • /
    • 제5권4호
    • /
    • pp.319-326
    • /
    • 2016
  • The ingenuity of structural engineers in the field of tall and super-tall buildings has led to some of the most remarkable inventions. During this evolution of structural engineering concepts in the last 100 years, the technical challenges that engineers encountered were extraordinary and the advances were unprecedented. However, as the accomplishments of structural engineers are progressing, the desire for taller and safer structures is also increasing. The diagrid structural system is part of this evolving process as it develops a new paradigm for tall building design combining engineering efficiency and new architectural expression. The first appearances of this type of tall buildings have already been constructed and the interest of both engineering and architectural communities is growing mainly due to the many advantages compared to other structural systems. This paper presents a simple approach on optimizing member sizes for the diagonals of steel diagrid tall buildings. The optimizing method is based on minimizing the volume of the diagonal elements of a diagrid structure. The constraints are coming from the stiffness-based design, limiting the tip deflection of the building to widely accepted regulative limits. In addition, the current paper attempts to open the discussion on the important topic of optimization and robustness for tall buildings and also studies the future of the diagrid structural system.

A novel method to specify pattern recognition of actuators for stress reduction based on Particle swarm optimization method

  • Fesharaki, Javad Jafari;Golabi, Sa'id
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.725-742
    • /
    • 2016
  • This paper is focused on stiffness ratio effect and a new method to specify the best pattern of piezoelectric patches placement around a hole in a plate under tension to reduce the stress concentration factor. To investigate the stiffness ratio effect, some different values greater and less than unity are considered. Then a python code is developed by using particle swarm optimization algorithm to specify the best locations of piezoelectric actuators around the hole for each stiffness ratio. The results show that, there is a line called "reference line" for each plate with a hole under tension, which can guide the location of actuator patches in plate to have the maximum stress concentration reduction. The reference line also specifies that actuators should be located horizontally or vertically. This reference line is located at an angle of about 65 degrees from the stress line in plate. Finally two experimental tests for two different locations of the patches with various voltages are carried out for validation of the results.

다종소재 접합을 위한 SPR(Self-Piercing Riveting)용 C-프레임 강성 최적설계 (Optimal Stiffness Design of Self-Piercing Riveting's C-Frame for Multimaterial Joining)

  • 신창열;이재진;문지훈;권순덕;양민석;이재욱
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.76-84
    • /
    • 2021
  • In this study, an optimal stiffness model of the C-frame, which was supporting the mold and tool load, was proposed to obtain quality self-piercing riveting (SPR) joining. First, the load path acting on the C-frame structure was identified using topology optimization. Then, a final suggested model was proposed based on the load path results. Stiffness and strength analyses were performed for a rivet pressing force of 7.3 [t] to compare the design performance of the final proposed model with that of the initial model. Moreover, to examine the reliability of continuous and repeated processes, vibration analysis was performed and the dynamic stiffness of the final proposed model was reviewed. Additionally, fatigue analysis was performed to ascertain the fatigue characteristics due to simple repetitive loading. Finally, stiffness test was performed for the final proposed model to verify the analysis results. The obtained results differed from the analysis result by 2.9%. Consequently, the performance of the final proposed model was superior to that of the initial model with respect to not only the SPR fastening quality but also the reliability of continuous and repetitive processes.