• Title/Summary/Keyword: Stiffness of frame

Search Result 849, Processing Time 0.02 seconds

Transient Response Analysis of Frame Structures Using the Finite Element-transfer Stiffness Coefficient Method (FE-TSCM) (유한요소-전달강성계수법을 이용한 골조 구조물의 과도응답해석)

  • 최명수;문덕홍;김성진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.674-684
    • /
    • 2002
  • In order to decrease remarkably the computation time and storage used in the direct integration method without the loss of accuracy, authors suggest a new transient analysis algorithm. This algorithm is derived from the combination of three techniques, that is, the transfer technique of the transfer stiffness coefficient method, the modeling technique of the finite element method, and the numerical integration technique of the Newmark method. In this paper, the transient analysis algorithm of a frame structure is formulated by the proposed method. The accuracy and computation efficiency of the proposed method are demonstrated through the comparing with the computation results by the direct integration method for three computation models under various excitations.

Large Deflection Analysis of a Plane Frame with Local Bending Collapse (국부적 굽힘붕괴를 수반하는 평면프레임의 대변형 해석)

  • 김천욱;원종진;강명훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1889-1900
    • /
    • 1995
  • In this study, a large deflection analysis of a plane frame composed of a thin-walled tube in investigated. When bent, a thin-walled tube is usually controlled by local buckling and subsequent bending collapse of the section. So load resistance reaches the yield level in a thin-walled rectangular tube. This relationship can be divided into three regimes : elastic, post-buckling and crippling. In this paper, this relationship is theoretically presented to be capable of describing nonlinearities and a stiffness matrix is derived by introducing a compound beam-spring element. A numerical analysis uses a constant incremental energy method and the solution is obtained by modifying stiffness matrix at elastic/inelastic stage. This analytical results, load-deflection paths show a good agreement with the test results.

Analysis of Twisting Deformation and Structural Design of the Door Frame of a Microwave Oven to Decrease Leakage of Microwave (전자파 누설 저감을 위한 전자레인지 도어 프레임의 비틀림 변형 해석과 구조 설계)

  • Lee, Boo-Youn;Koo, Jin-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.141-148
    • /
    • 2005
  • When one opens the door of a microwave oven during operation, microwave might leak through the clearance of the door. Present research has been motivated by the need to reduce the possible clearance by enhancing torsional stiffness of the door of the microwave oven. Static deformation of the door frame of the oven is analyzed under a door-opening force. On the basis of the topological optimization, the right flange of the door frame is shown to need reinforcing. Several types of reinforcing brackets weldable to the right flange is proposed, and their effects to the stiffness of the door frame are compared and evaluated.

Stiffness and Fatigue Strength Analysis of Fuel Cell Vehicle Body Frame (연료전지차량 차체프레임 강성 및 내구해석)

  • Choi, Bok-Lok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • Firstly, FEM model for the body frame of a fuel cell vehicle was built up and design optimization results based on different schemes were exhibited. One scheme was to minimize weight while maintaining the normal mode frequencies and the other was to increase the frequencies without weight change. Next, for a rear frame model, shape parameter study on collapse characteristics such as peak resistance load and absorbed energy was carried out. Also, the stiffness of frame mounting brackets was predicted using inertance calculation and the durability of those mounting brackets for vehicle system loads was evaluated. Finally, for a representative mounting model, the influence on durability due to thickness change was analyzed.

An Experimental Study on Fatigue Life of Brace Mounting Joint (브레이스 마운팅 결합부의 피로 수명에 관한 실험적 연구)

  • 김동우
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.104-109
    • /
    • 1998
  • This document is a experimental study on fatigue life of brace mounting weld joint. A brace is used to put sub-frame together on the main frame with high strength bolts. It has low fatigue life so a patch is in need for improving a fatigue characteristics of welded joint in brace mounting This paper presents the most pertinent patch size for truck. For this, a critical stress is computed at the point of fatigue crack occurred on truck frame by finite Element Analysis. Using by this critical stress. Designers are able to determin whether fatigue crack is occurred and are able to select a pertinent patch type. And then, with a selected patch type, structural joint stiffness was estimated to compare to the conventional and other patch type or brace mounting Finally, fatigue test were performed to prove a suitability of selected prototype compare with the conventional and other patch type or brace mounting.

Topology optimization of bracing systems using a truss-like material model

  • Zhou, Kemin
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.231-242
    • /
    • 2016
  • To minimize the compliance of frame, a method to optimize the topology of bracing system in a frame is presented. The frame is first filled uniformly with a truss-like continuum, in which there are an infinite number of members. The frame and truss-like continuum are analysed by the finite element method altogether. By optimizing the distribution of members in the truss-like continuum over the whole design domain, the optimal bracing pattern is determined. As a result, the frame's lateral stiffness is enforced. Structural compliance and displacement are decreased greatly with a smaller increase in material volume. Since optimal bracing systems are described by the distribution field of members, rather than by elements, fewer elements are needed to establish the detailed structure. Furthermore, no numerical instability exists. Therefore it has high calculation effectiveness.

Dynamic Behavior Analysis of Reciprocating Compressor Frame with Variable Rotating Speed (가변속 왕복동형 압축기 본체의 동적 거동 해석)

  • 김태종;이상민;박찬수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.362-367
    • /
    • 2001
  • A reciprocating compressor unit with variable rotating speed driven by BLDC motor is mounted inside hermetic chamber on an internal suspension composed of 4 coil springs and a discharge pipe. A method for predicting the dynamic behavior of compressor frame is required to reduce the transmitted vibration level. Mechanical characteristics such as mass, spring and discharge pipe stiffness properties are obtained with experimentation. To confirm the vibration model for compressor frame, free vibration analyses are performed with theoretical and experimental methods. Results for analytical and experimental investigations on dynamic behavior of the compressor frame are presented, and the agreement between measured and predicted results are satisfactory.

  • PDF

Study on the Equation of Natural Period of Middle and Low Rise Building of Upper-Walled Lower Frame Type (중저층 상부벽식 하부골조 구조의 고유주기 산정식에 관한 연구)

  • Yoo, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.60-67
    • /
    • 2021
  • According to the 「Guidelines of Structural Design for Piloti Building」 of the Ministry of Land, Infrastructure and Transport (2018), the natural period of middle and low rise building of upper-walled lower frame type, such as the domestic multiplex house in piloti style, is suggested for safety to apply the existing code formula of the wall structure. However, the current code formula of the wall structure was provided based on actual measurement of high-rise wall-type structures that mainly exhibit bending behavior. So it is considered that it is not suitable for a piloti-type house with four stories or less, where the wall behaves in shear. See also Park et al. (2000) confirmed that the effect of the lower frame part is greater than that of the upper wall part in the natural period of complex structures with 10 or more floors through analytical studies. Therefore, in this study, in order to examine the effect of the lower frame on the natural period of the middle and low-rise piloti structure, the estimation of natural period by the finite element analysis, approximation formula and ccurrent code formula was performed for the target structures with the shear and flexural stiffness of the upper wall and the shear stiffness of the lower frame as variables. As result, it was found that the change in the shear stiffness of the lower frame had a greater effect on the natural period of the whole building than the change in the bending or shear stiffness of the upper wall.

Evaluation of The Lateral Strength Performance of Rigid Wooden Portal Frame (강절형 목질 문형라멘프레임의 수평내력성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.535-543
    • /
    • 2017
  • For column-beam gussets of wooden structures, slit-processed members inserted with a steel plate are used in general. In this study, a rigid portal frame bonded with a joint was fabricated and a semi-rigid portal frame was fabricated by making a wooden gusset, a replacement for steel plate, of which a half was integrated into the column member and the other half was joined with the beam member by drift-pins. The lateral strength performance of the wooden portal frame was compared with that of the steel plate-inserted joint portal frame. The lateral strength performance was evaluated through a perfect elasto-plasticity model analysis, sectional stiffness change rate, and short-term permissible shear strength. As a result of the experiment, the maximum strength of the rigid portal frame was lower than that of the steel plate-inserted joint portal frame. The yield strength and ultimate strength were calculated as 0.58 and 0.48, respectively, but the measurements of initial stiffness and cumulative ductility improved by 1.35 and 1.1, respectively. As a result of the perfect elasto-plasticity model analysis of the semi-rigid portal frame, the maximum strength was lower than that of the rigid portal frame, but the toughness after failure was excellent. Thus, the ultimate strength was higher by 1.05~1.07. The steel plate-inserted portal frame showed rapid decrease in stiffness with the progress of repeated tests, but the stiffness of the portal frames with a wooden joint decreased slowly.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.