• 제목/요약/키워드: Stiffness evaluation

검색결과 1,032건 처리시간 0.026초

강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가 (Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete)

  • 홍건호;정승원
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Correlationship among Smartphone Screen Time, Cervical Alignment, and Muscle Function in University Students

  • Hyungyu Cha;Seonyoung Hwang;Jinyoung Eo;Hyein Ji;Jiwon Han;Wonjae Choi
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권4호
    • /
    • pp.446-453
    • /
    • 2022
  • Objective: The popularization of smartphones can lead to abnormal cervical alignment in university students. The aim of this study was to investigate the relationship among smartphone screen time, cervical alignment, and muscle function in university students. Design: Cross-sectional study. Methods: Seventy-five university students participated in the study. They completed the evaluation of cervical alignment and muscle function, such as handgrip strength, proprioception, and muscle quality (tone, stiffness, and relaxation time). All participants recorded their general characteristics and individual smartphone screen time before the evaluation. They were evaluated craniovertebral angle (CVA) using smartphone application (angle meter 360) for measuring cervical alignment. The muscle function was assessed using a digital hand-held dynamometer, dual inclinometer, and MyotonPRO device. Results: Of all participants, twenty-five university students had forward head posture (CVA<49°, 33.33%). Independent t-test revealed that there were significant differences on smartphone screen time, muscle stiffness, and muscle relaxation between the participants with and without forward head posture (p<0.05). There were significant correlations between the smartphone screen time and the CVA, muscle tone, and muscle relaxation (r=-0.493, 0.250, and -0.500, respectively). Conclusions: The results indicate that the university students with forward head posture had high smartphone screen time and muscle stiffness compared to the students without forward head posture, and smartphone screen time might be associated with cervical alignment and muscle quality.

감즙염색이 직물의 태에 미치는 영향 (Effect of Dyeing by Immature Persimmon Juice on the Hand of Fabrics)

  • 고은숙;이혜선
    • 한국의류학회지
    • /
    • 제27권8호
    • /
    • pp.883-891
    • /
    • 2003
  • In this study, a change of hand of fabrics dyed with persimmon juice was measured using Kawabata Evaluation System. Using various cotton fabrics, linen fabric and silk fabric used frequently for persimmon juice dyeing, we examined the changes of physical properties and hand according to persimmon juice dyeing and washing. The dynamic characteristics of hand were measured tensile, shear, bending, compression, surface properties, thickness and weight. Linearity of load-extention and tensile resilience were increased in all kinds of fabrics after dyeing. Tensile energy decreased in cotton fabric 2(gauze), cotton fabric 3(muslin) and linen fabric. Shear stiffness and hysteresis of shear increased in most of fabrics. Bending rigidity of the bending property and hysteresis of bending, linearity of compression of the compression property, compression energy and compression resilience increased in all kinds of fabrics after dyeing. Thickness and weight increased much in all kinds of fabrics after dyeing. In the primary hand value, stiffness and anti-drape stiffness increased in all kind of fabrics after dyeing. The fullness and softness, crispness, scrooping feeling and flexibility with soft feeling decreased. As the stiffness after persimmons dyeing increased, it was suitable for clothes material of summer.

포장강성을 고려한 콘크리트 포장하부 공동유무 평가방법 (A Method for Evaluation of Hollow Existence in Sublayers of Concrete Pavement Considering Pavement Stiffness)

  • 손덕수;이재훈;정호성;박주영;정진훈
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.95-102
    • /
    • 2013
  • PURPOSES: The existing method evaluating the existence of the hollows in concrete pavement does not consider the stiffness of pavement. In addition, the method uses unreasonable logic judging the hollow existence by the deflection caused by zero loading. In this study, the deflection of slab corner due to heavy weight deflectometer (HWD) was measured in concrete pavement sections where underground structures are located causing the hollows around them. METHODS: The modulus of subgrade reaction obtained by comparing the actual deflection of slab to the result of finite element analysis was calibrated into the composite modulus of subgrade reaction. The radius of relative stiffness was calculated, and the relationship between the ratio of HWD load to the radius of relative stiffness and the slab deflection was expressed as the curve of secondary degree. RESULTS: The trends of the model coefficients showing width and maximum value of the curve of secondary degree were analyzed by categorizing the pavement sections into three groups : hollows exist, additional investigation is necessary, and hollows do not exist. CONCLUSIONS: The results analyzed by the method developed in this study was compared to the results analyzed by existing method. The model developed in this study will be verified by analyzing the data obtained in other sections with different pavement structure and materials.

Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction

  • Deng, En-Feng;Zong, Liang;Ding, Yang
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.347-359
    • /
    • 2019
  • Modular construction has been increasingly used for mid-to-high rise buildings attributable to the high construction speed, improved quality and low environmental pollution. The individual and repetitive room-sized module unit is usually fully finished in the factory and installed on-site to constitute an integrated construction. However, there is a lack of design guidance on modular structures. This paper mainly focuses on the evaluation of the initial stiffness of corrugated steel plate shears walls (CSPSWs) in container-like modular construction. A finite element model was firstly developed and verified against the existing cyclic tests. The theoretical formulas predicting the initial stiffness of CSPSWs were then derived. The accuracy of the theoretical formulas was verified by the related numerical and test results. Furthermore, parametric analysis was conducted and the influence of the geometrical parameters on the initial stiffness of CSPSWs was discussed and evaluated in detail. The present study provides practical design formulas and recommendations for CSPSWs in modular construction, which are useful to broaden the application of modular construction in high-rise buildings and seismic area.

TWB 판넬의 기계적특성 평가에 관한 연구 (A Study on the Evaluation of Mechanical Characteristics for Tailor Welded Blank Panel)

  • 천창환;한창석
    • 열처리공학회지
    • /
    • 제23권4호
    • /
    • pp.183-190
    • /
    • 2010
  • There are many methods to reduce the weight and the cost of the automobile body, among them, Tailor Welded Blank (TWB) is new welding method applied to body structure. It is necessary to evaluate mechanical properties of TWB structures or sheets for the application to automobile body parts. In this study, the stiffness of T-type and L-type joint structures, composite of TWB panel, which simplified two portions of side structure in automobile body were investigated. Additionally, the fatigue properties of TWB panels were obtained. Two types of welding technologies, laser and mash seam welding, were used to join mild panels with different thickness. This results are compared with conventional structures. The results are as follows: 1) The stiffness of joint structures, composite of TWB panel, is approximately 17% higher than that of conventional ones. 2) The location of welding line in TWB had a effect on the in plane bending stiffness, but not on the out of plane bending stiffness. 3) In terms of welding technology type, the mash seam welding show higher stiffness than the laser welding for in plane bending stiffness. But minimal differences in both types are revealed for out of plane bending stiffness. 4) The fatigue strength, composite of TWB panel, is lower than that of base steel. It is thought that defects in the welding zone had the action of notch in the fatigue test.

Seismic performance assessment of steel reinforced concrete members accounting for double pivot stiffness degradation

  • Juang, Jia-Lin;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • 제8권6호
    • /
    • pp.441-455
    • /
    • 2008
  • This paper presents an effective hysteretic model for the prediction and evaluation of steel reinforced concrete member seismic performance. This model adopts the load-deformation relationship acquired from monotonic load tests and incorporates the double-pivot behavior of composite members subjected to cyclic loads. Deterioration in member stiffness was accounted in the analytical model. The composite member performance assessment control parameters were calibrated from the test results. Comparisons between the cyclic load test results and analytical model validated the proposed method's effectiveness.

철도차량용 고무스프링 특성해석 및 평가 (Finite Element Analysis and Evaluation of Rubber Spring for Railway Vehicle)

  • 우창수;김완두;최병익;박현성;김경식
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.773-778
    • /
    • 2009
  • Chevron rubber springs are used in primary suspensions for rail vehicle. Chevron rubber spring have function which reduce vibration and noise, support load carried in operation of rail vehicle. Prediction and evaluation of characteristics are very important in design procedure to assure the safety and reliability of the rubber spring. The computer simulation using the nonlinear finite element analysis program executed to predict and evaluate the load capacity and stiffness for the chevron spring. The non-linear properties of rubber which are described as strain energy functions are important parameters. These are determined by material tests which are uniaxial tension, equi-biaxial tension and shear test. The appropriate shape and material properties are proposed to adjust the required characteristics of rubber springs in the three modes of flexibility.