• 제목/요약/키워드: Stiffness coefficient

검색결과 575건 처리시간 0.024초

범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구 (A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps)

  • 이용복;박동진;김창호
    • Tribology and Lubricants
    • /
    • 제22권5호
    • /
    • pp.252-259
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performances, stiffness, damping coefficient and load capacity, depend on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1 mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구 (A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps)

  • 박동진;김창호;이성철;이용복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1135-1141
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performance, stiffness, damping coefficient and load capacity, depends on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

  • PDF

철도차량 현가특성의 최적설계에 관한 연구 (A Study on the Optimum Design of Railway Vehicle Suspension Characteristics)

  • 조동현;임진수
    • 한국철도학회논문집
    • /
    • 제2권2호
    • /
    • pp.6-12
    • /
    • 1999
  • In this study, the most important suspension characteristics of railway vehicle, such as primary and secondary stiffness, are optimized to maximize ride qualify. Critical speed, secondary suspension stroke oil tangent track and derailment coefficient on the maximum curvature, are selected as the performance constraints. Piecewise linear curving model is used to evaluate derailment coefficient where it is assumed that wheel/rail contacts occurs at tread or at idealized flange. The combined design procedure is used to optimize above design variables at the same time.

  • PDF

유막의 온도변화를 고려한 플로팅 링 저어널베어링의 성능해석 (An Analysis of Performance of Floating-Ring Journal Bearing Including Thermal Effects)

  • 김종수;최상규;유광택
    • Tribology and Lubricants
    • /
    • 제17권2호
    • /
    • pp.130-137
    • /
    • 2001
  • In this paper, the thermal effects on the performance of floating ring journal bearing are investigated theoretically. The numerical analyses include pressure drop at inner film due to a centrifugal force, fluid momentum effects of supply oil into inner film and thermal effects in lubricating films. All performance data are presented as the rotating speed of journal from 10,000 rpm to 70,000 rpm.

폐단면리브로 보강된 일축압축을 받는 복합적층판의 국부좌굴강도 증가효과 (Increasing Effect in Local Buckling Strength of Laminated Composite Plates Stiffened with Closed-section Ribs under Uniaxial Compression)

  • 황수희;김유식;최병호
    • 복합신소재구조학회 논문집
    • /
    • 제4권2호
    • /
    • pp.39-44
    • /
    • 2013
  • This study is aimed to examine the influence of the rotational stiffness of U-shaped ribs on the local buckling behaviors of laminated composite plates. Applying the orthotropic plates with eight layers of the layup $[(0^{\circ})4]s$ and $[(0^{\circ}/90^{\circ})2]s$, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. There is a need to develope a simple design equation to establish the rotational stiffness effect, which could be easily quantified by comparing the theoretical critical stress equation for laminated composite plates with elastic restraints based on the Classical laminated plate theory. Through the parametric numerical studies, it is confirmed that there should clearly exist an increasing effect of local plate buckling strength due to the rotational stiffness by closed-section ribs. An applicable coefficient for practical design should be verified and proposed for future study. This study will contribute to the future study for establishing an increasing coefficient for the design strength and optimum design of U-rib stiffened plates.

수심별 조도계수 변화를 고려한 수목 조도공식 특성 분석 (Analysis of Tree Roughness Evaluation Methods Considering Depth-Dependent Roughness Coefficient Variation)

  • 이두한;이동섭
    • Ecology and Resilient Infrastructure
    • /
    • 제10권3호
    • /
    • pp.51-63
    • /
    • 2023
  • 하천내 수목관리는 홍수와 생태 관리의 균형점을 찾는다는 점에서 매우 중요하며 이를 위해서는 수목이 하천 수위에 미치는 영향을 정확하게 평가할 필요가 있다. 본 연구에서 수목에 작용하는 항력을 고려하는 수목조도공식 8개에 대해 검토하여 실무 수리계산의 관점에서 수목 조도계수 공식의 특성과 적용성을 평가하였다. 개별 수목 조도계수 공식의 수심별 조도계수 산정 특성을 비교하고, 수관부 영향, 수목밀도와 직경 영향, 수목 강성계수 영향, 수위 산정 결과 등을 분석하였다. 동일 조건 수심별 조도계수 비교를 통해 Kouwen and Fathi-Moghadam 공식과 Fischenich 공식은 타 공식에 비해 과도한 조도계수를 산정하였다. 수관부, 수목 직경, 수목 밀도 등은 공식에 따라 상이한 경향을 나타내나 과도한 특이점은 없는 것으로 나타났다. 수목 강성계수를 고려하는 Freeman et al. 공식과 Whittaker et al. 공식은 강성계수에 따라 조도계수가 매우 큰 차이를 나타낸다. 8개 공식의 조도계수 산정 결과를 이용하여 국내 중소규모 가상 하천에 적용한 결과 최대 약 0.2 - 0.4 m 정도의 수위 상승효과를 나타내고 있다. 이상의 검토를 통해 유사한 특성을 가지며 입력자료의 불확실성이 낮은 Baptist et al., Huthoff et al., Cheng, Luhar and Nepf 등의 4개 공식이 실무 적용에 적합한 것으로 판단하였다.

새로운 부등매개변수 면회변형 곡선보 요소 (A New Anisoparametric Out-of-Plane Deformable Curved Beam Element)

  • 유재형;유승원;민옥기
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.582-591
    • /
    • 2001
  • It is known that the reduced integration, modified shape function, anisoparametric and non-conforming element can reduce the error induced by stiffness locking phenomenon in the finite element analysis. In this study, we propose new anisoparametric curved beam element. The new element based on reduced minimization theory is composed of different shape functions in each displacement field. By the substitution of this modified shape function, the unmatched coefficient that cause stiffness locking in the constraint energy is eliminated. To confirm the availability of this new model, we performed numerical tests for a simple model. As a result of numerical test, the undulate stress patterns are disappeared in static analysis, and displacements and stresses are close to exact solution. Not only in the static analysis but also in the eigen analysis of free vibrated curved beam model, this element shows successful convergent results.

SIMPLE MODELS TO INVESTIGATE THE EFFECT OF VELOCITY DEPENDENT FRICTION ON THE DISC BRAKE SQUEAL NOISE

  • Shin, K.;Brennan, M.J.;Joe, Y.G.;Oh, J.E.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.61-67
    • /
    • 2004
  • This paper suggests two simple two-degree-of-freedom models to describe the dynamical interaction between the pad and the disc of a disc brake system. Separate models for in-plane and out -of-plane vibration are described. Although a brake pad and disc have many modes of vibration, the interaction between a single mode of each component is considered as this is thought to be crucial for brake noise. For both models, the pad and the disc are connected by a sliding friction interface having a velocity dependent friction coefficient. In this paper, it is shown that this friction model acts as negative damping in the system that describes the in-plane vibration, and as negative stiffness in system that describes the out-of-plane vibration. Stability analysis is performed to investigate the conditions under which the systems become unstable. The results of the stability analysis show that the damping is the most important parameter for in-plane vibration, whereas the stiffness is the most important parameter for the out-of-plane vibration.

Ductility and inelastic deformation demands of structures

  • Benazouz, Cheikh;Moussa, Leblouba;Ali, Zerzour
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.631-644
    • /
    • 2012
  • Current seismic codes require from the seismically designed structures to be capable to withstand inelastic deformation. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformation and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the performance-based seismic design through capacity-spectrum methods. In this paper, the median of the ductility demand ratio for 80 ground motions are presented for different levels of normalized yield strength, defined as the yield strength coefficient divided by the peak ground acceleration (PGA). The influence of the post-to-preyield stiffness ratio on the ductility demand is investigated. For fixed levels of normalized yield strength, the median ductility versus period plots demonstrated that they are independent of the earthquake magnitude and epicentral distance. Determined by regression analysis of the data, two design equations have been developed; one for the ductility demand as function of period, post-to-preyield stiffness ratio, and normalized yield strength, and the other for the inelastic deformation as function of period and peak ground acceleration valid for periods longer than 0.6 seconds. The equations are useful in estimating the ductility and inelastic deformation demands for structures in the preliminary design. It was found that the post-to-preyield stiffness has a negligible effect on the ductility factor if the yield strength coefficient is greater than the PGA of the design ground motion normalized by gravity.

Analysis of key elements of single-layer dome structures against progressive collapse

  • Zhang, Qian;Huang, Wenxing;Xu, Yixiang;Cai, Jianguo;Wang, Fang;Feng, Jian
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.257-264
    • /
    • 2022
  • The analysis of the progressive collapse resistance of structures is a well-known issue among structural engineers. Large-span reticulated dome structures are commonly utilized in large public buildings, necessitating research into their progressive collapse resistance to assure user safety. The most significant part of improving the structural resilience of reticulated domes is to evaluate their key elements. Based on a stiffness-based evaluation approach, this work offers a calculating procedure for element importance coefficient. For both original and damaged structures, evaluations are carried out using the global stiffness matrix and the determinant. The Kiewitt, Schwedler, and Sunflower reticulated domes are investigated to explore the distribution characteristic of element importance coefficients in the single-layer dome structures. Moreover, the influences of the load levels, load distributions, geometric parameters and topological features are also discussed. The results can be regarded as the initial concept design reference for single-layer reticulated domes.