• 제목/요약/키워드: Stiffness Tailoring

검색결과 7건 처리시간 0.022초

Tailoring the second mode of Euler-Bernoulli beams: an analytical approach

  • Sarkar, Korak;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.773-792
    • /
    • 2014
  • In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.

Extension of a new tailoring optimisation technique to sandwich shells with laminated faces

  • Icardi, Ugo
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.739-759
    • /
    • 2012
  • The tailoring optimization technique recently developed by the author for improving structural response and energy absorption of composites is extended to sandwich shells using a previously developed zig-zag shell model with hierarchic representation of displacements. The in-plane variation of the stiffness properties of plies and the through-the thickness variation of the core properties are determined solving the Euler-Lagrange equations of an extremal problem in which the strain energy due to out-of-plane strains and stresses is minimised, while that due to their in-plane counterparts is maximised. In this way, the energy stored by unwanted out-of-plane modes involving weak properties is transferred to acceptable in-plane modes. As shown by the numerical applications, the critical interlaminar stress concentrations at the interfaces with the core are consistently reduced without any bending stiffness loss and the strength to debonding of faces from the core is improved. The structural model was recently developed by the author to accurately describe strain energy and interlaminar stresses from the constitutive equations. It a priori fulfills the displacement and stress contact conditions at the interfaces, considers a second order expansion of Lame's coefficients and a hierarchic representation that adapts to the variation of solutions. Its functional d.o.f. are the traditional mid-plane displacements and the shear rotations, so refinement implies no increase of the number of functional d.o.f. Sandwich shells are represented as multilayered shells made of layers with different thickness and material properties, the core being treated as a thick intermediate layer.

복합재료 회전축의 진동 특성 및 안정성 해석 (Vibration and Stability of Composite Thin-Walled Spinning Shaft)

  • 윤형원;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1083-1088
    • /
    • 2004
  • This paper deals with the vibration and stability of a circular cylindrical shaft, modeled as a tapered thin-walled composite beam and spinning with constant angular speed about its longitudinal axis, and subjected to an axial compressive force. Hamilton's principle and the assumed mode method are employed to derive the governing equations of motion. The resulting eigenvalue problem is analyzed, and the stability boundaries are presented for selected taper ratios and axial compressive force combinations. Taking into account the directionality property of fiber reinforced composite materials, it is shown that for a shaft featuring flapwise-chordwise-bending coupling, a dramatic enhancement of both the vibration and stability behavior can be reached. It is found that by the structural tailoring and tapering, bending natural frequencies, stiffness and stability region can be significantly increased over those of uniform shafts made of the same material. In addition, the particular case of a classical beam with internal damping effect is also included.

  • PDF

Tailoring fabric geometry of plain-woven composites for simultaneously enhancing stiffness and thermal properties

  • Zhou, Xiao-Yi;Wang, Neng-Wei;Xiong, Wen;Ruan, Xin;Zhang, Shao-Jin
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.489-499
    • /
    • 2022
  • This paper proposes a numerical optimization method to design the mesoscale architecture of textile composite for simultaneously enhancing mechanical and thermal properties, which compete with each other making it difficult to design intuitively. The base cell of the periodic warp and fill yarn system is served as the design space, and optimal fibre yarn geometries are found by solving the optimization problem through the proposed method. With the help of homogenization method, analytical formulae for the effective material properties as functions of the geometry parameters of plain-woven textile composites were derived, and they are used to form the inverse homogenization method to establish the design problem. These modules are then put together to form a multiobjective optimization problem, which is formulated in such a way that the optimal design depends on the weight factors predetermined by the user based on the stiffness and thermal terms in the objective function. Numerical examples illustrate that the developed method can achieve reasonable designs in terms of fibre yarn paths and geometries.

신경회로망과 유전자 알고리즘을 이용한 복합재료의 최적설계에 관한 연구 (A Study on Optimal Design of Composite Materials using Neural Networks and Genetic Algorithms)

  • 김민철;주원식;장득열;조석수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.501-507
    • /
    • 1997
  • Composite material has very excellent mechanical properties including tensile stress and specific strength. Especially impact loads may be expected in many of the engineering applications of it. The suitability of composite material for such applications is determined not only by the usual paramenters, but its impactor energy-absorbing properties. Composite material under impact load has poor mechanical behavior and so needs tailoring its structure. Genetic algorithms(GA) is probabilistic optimization technique by principle of natural genetics and natural selection and neural networks(NN) is useful for prediction operation on the basis of learned data. Therefore, This study presents optimization techniques on the basis of genetic algorithms and neural networks to minimum stiffness design of laminated composite material.

  • PDF

강성재단 된 등방성 박스보의 동적 특성에 관한 실험적 연구 (Experimental Study on Dynamic Characteristics of Structurally Tailored Isotropic Box Beams)

  • 김경덕;김준식
    • 대한기계학회논문집A
    • /
    • 제37권5호
    • /
    • pp.641-648
    • /
    • 2013
  • 보 구조물들은 보다 우수한 성능을 위하여 다양한 형태의 보강재 또는 단면 형상을 가지게 된다. 강성재단을 설계에 적용하기 위해서는 강성재단에 의해서 발생하는 연계 거동을 정확하게 예측하는 것이 필요하다. 본 연구에서는 문헌에서 보고된 복합재료 보의 특이한 연계거동(면외 굽힘-전단 연계)을 실험적으로 확인하기 위하여, 등가의 동적 연계거동을 나타내는 강성재단 된 등방성 박스보를 제작하였다. 제작된 시편의 주파수 및 모드 형상 등의 동적 특성을 3 차원 유한요소해석과 비교 검토하여, 문헌에 보고된 특이한 전단 연계 거동이 발생함을 확인하였다. 이러한 거동은 보강재의 적절한 배치를 통해 원하는 방향으로 강성재단 될 수 있고, 얻어진 연계 거동은 다양한 분야에 응용될 수 있다.

열간나노압입공정을 이용한 극미세 점구조체 제작을 위한 플라스틱소재 판의 기계적 특성 조사 (A Study on the Plate-Type Polymer Hyperfine Pit Structure Fabrication and Mechanical Properties Measurement by Using Thermal-Nanoindentation Process)

  • 이은경;강충길
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.633-642
    • /
    • 2008
  • It's important to measure quantitative properties about thermal-nano behavior of polymer for producing high quality components using Nanoimprint lithography process. Nanoscale indents can be used to make the cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. In this study, formability of polymethylmetacrylate(PMMA) and polycarbonate(PC) were characterized Polymer has extreme variation in thermo mechanical variation during forming high temperature. Because of heating the polymer, it becomes softer than at room temperature. In this case it is particularly important to study high temperature-induced mechanical properties of polymer. Nanoindenter XP(MTS) was used to measure thermo mechanical properties of PMMA and PC. Polymer was heated by using the heating stage on NanoXP. At CSM(Continuous Stiffness Method) mode test, heating temperature was $110^{\circ}C,120^{\circ}C,130^{\circ}C,140^{\circ}C$ and $150^{\circ}C$ for PMMA, $140^{\circ}C,150^{\circ}C,160^{\circ}C,170^{\circ}C$ and $180^{\circ}C$ for PC, respectively. Maximum indentation depth was 2000nm. At basic mode test, heating temperature was $90^{\circ}C$ and $110^{\circ}C$ for PMMA, $140^{\circ}C,160^{\circ}C$ for PC. Maximum load was 10mN, 20mN and 40mN. Also indented pattern was observed by using SEM and AFM. Mechanical properties of PMMA and PC decreased when temperature increased. Decrease of mechanical properties from PMMA went down rapidly than that of PC.