• Title/Summary/Keyword: Stiffness Parameters

Search Result 1,575, Processing Time 0.032 seconds

변수변화에 따른 가변강성 메커니즘의 강성변화 경향성에 관한 연구 (Parametric Study on the tendency of Stiffness Variation using Variable Stiffness Mechanism)

  • 함기범;한지호;전종균;박용재
    • 한국산학기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.750-758
    • /
    • 2016
  • 일반적으로 시스템을 강성체로 설계할 경우 시스템의 구조적 안정성을 확보할 수 있으나 유리잔을 잡거나 작은 수술용 도구로 사용하는 등의 사용용도에 따라 활용성이 제한될 수 있다. 이러한 문제를 해결하기 위하여 유연한 재질을 사용하여 강성조절이 가능한 메커니즘에 대한 연구가 다양하게 이루어져 왔다. 기존에 연구했던 강성체와 연성체의 연속구조로 이루어진 모델에 텐던을 삽입한 구조를 이용한 가변강성 메커니즘을 통하여 가변강성 구조체에 대한 가능성을 확인하였다. 그러나 필요로 하는 가변강성을 충족하기 위한 구조체의 설계 변수에 대한 연구가 필요하였다. 따라서 본 연구에서는 가변강성 메커니즘의 다양한 변수 변화에 따른 강성변화 실험을 통해 강성의 경향성을 파악하고자 하였다. 실험 결과 지름이 클수록 강성은 증가하며 강성의 증가폭 또한 늘어난다. 또한 연성체 길이가 짧을수록 강성이 증가하며 텐던을 당겨 연성체를 압착할 경우 강성값은 비선형적으로 증가하였다. 동일 조건에서 연성체 길이변화에 따른 강성 증가폭과 강성체의 길이 변화에 따른 강성 증가폭을 비교하였을 때 연성체 길이 변화가 강성체 길이 변화 보다 강성값 변화에 영향을 미친다는 것을 확인하였다. 또한, 해석값이 실험값에 비하여 정확성은 낮지만, 가변강성의 경향성을 확인하기 위하여 해석적인 방법을 통한 강성을 예측해보았다. 이러한 변수변화 실험 결과는 필요로 하는 강성값을 충족하는 가변강성 메커니즘 설계에 활용할 수 있을 것이다.

탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석 (Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation)

  • 서동찬;김경희;이도훈;이보라;서준호
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang;Zhang, Runhong;Goh, Anthony. T.C.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.577-588
    • /
    • 2018
  • A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

설계변수 변화에 대한 KTX 가선계의 응답 특성 (Vibrational Characteristics of KTX Catenary System for Changing Design Parameters)

  • 박성훈;김정수;조용현;최강윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.265-272
    • /
    • 2001
  • Dynamic characteristics of catenary system for KTX Korean high-speed trains are investigated. A simulation program based on the finite element models of the catenary is developed. The influences of the various design parameters on the vibrational responses of the catenary are determined. The main design parameters include tension on the contact and messenger wires and the stiffness of the droppers connecting the two wires. The vibrational responses are primarily determined by the reflections of the propagating wave, and the dropper stiffness is found to be the dominant factor that influences overall dynamic characteristics of the catenary.

  • PDF

거주공간에서 뜬바닥 구조에 사용하는 동탄성계수 측정방법 (Determination of dynamic stiffness of materials used under floating floors in dwellings)

  • 정갑철;오양기;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.945-949
    • /
    • 2002
  • This part of specifies the method for determining the dynamic stiffness of resilient materials used under floating floors. Dynamic stiffness is one of the parameters that determine the sound insulation of such floors in dwellings. This part applies to the determination of dynamic stiffness per unit area of resilient materials with smooth surfaces used in a continuous layer under floating floors in dwellings

  • PDF

3D seismic assessment of historical stone arch bridges considering effects of normal-shear directions of stiffness parameters between discrete stone elements

  • Cavuslu, Murat
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.207-227
    • /
    • 2022
  • In general, the interaction conditions between the discrete stones are not taken into account by structural engineers during the modeling and analyzing of historical stone bridges. However, many structural damages in the stone bridges occur due to ignoring the interaction conditions between discrete stones. In this study, it is aimed to examine the seismic behavior of a historical stone bridge by considering the interaction stiffness parameters between stone elements. For this purpose, Tokatli historical stone arch bridge was built in 1179 in Karabük-Turkey, is chosen for three-dimensional (3D) seismic analyses. Firstly, the 3D finite-difference model of the Tokatli stone bridge is created using the FLAC3D software. During the modeling processes, the Burger-Creep material model which was not used to examine the seismic behavior of historical stone bridges in the past is utilized. Furthermore, the free-field and quiet non-reflecting boundary conditions are defined to the lateral and bottom boundaries of the bridge. Thanks to these boundary conditions, earthquake waves do not reflect in the 3D model. After each stone element is modeled separately, stiffness elements are defined between the stone elements. Three situations of the stiffness elements are considered in the seismic analyses; a) for only normal direction b) for only shear direction c) for both normal and shear directions. The earthquake analyses of the bridge are performed for these three different situations of the bridge. The far-fault and near-fault conditions of 1989 Loma Prieta earthquake are taken into account during the earthquake analyses. According to the seismic analysis results, the directions of the stiffness parameters seriously changed the earthquake behavior of the Tokatli bridge. Moreover, the most critical stiffness parameter is determined for seismic analyses of historical stone arch bridges.

거리센서를 이용한 원격 조종 장치의 임피던스 변조 (Modulation of Impedance Parameters for a Teleoperator Using Distance Measurement)

  • 송지혁;박종현;김상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.84-84
    • /
    • 2000
  • This paper proposes a new impedance control scheme based on a variable stiffness matrix for a bilateraL teleoperation. In this scheme, stiffness matrix of the impedance model in the slave is modulated based on the distance, measured by an ultrasonic sensor, between the slave and environment. At the same time, the stiffness matrix of the master is also changed accordingly in order for the impedance parameters of the combined system to remain constant The proposed scheme is implemented on a 1-dof master/slave system to perform a simple task. In the experiments, the teleoperator with the impedance parameter modulation shows better performance than one with fixed impedance parameters, especially in reducing task execution time and in avoiding excessive external forces.

  • PDF

Structural joint modeling and identification: numerical and experimental investigation

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.373-392
    • /
    • 2015
  • In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed first for a two parameter joint model and then for a three parameter model, in which cross coupling terms are also included. Two cases of structural connections have been considered, first with a cantilever beam with support flexibility and then a pair of beams connected through lap joint. The validity of the proposed method is demonstrated through numerical simulation and by experimentation.

비동질 탄성 무한공간에 대한 비례경계유한요소법의 동적강도행렬 (Dynamic Stiffness of the Scaled Boundary Finite Element Method for Non-Homogeneous Elastic Space)

  • 이계희
    • 한국전산구조공학회논문집
    • /
    • 제23권2호
    • /
    • pp.165-173
    • /
    • 2010
  • 본 논문에서는 비동질 탄성무한공간에 대한 비례경계유한요소법의 동적강도행렬을 해석적으로 유도하였다. 해석영역의 비동질성은 비동질파라메터를 지수로 하는 멱함수로 고려하였다. 동적강도행렬은 진동수영역에서 다항식으로 점근전개한 후, 방사조건을 만족시키도록 하여 각 다항식의 계수를 구하는 과정을 통하여 유도되었다. 얻어진 동적강도행렬의 타당성을 검증하기 위해 정확해가 알려져 있는 대표적인 문제에 대하여 비동질파라메터의 값을 변화시키면서 수치해석을 수행하였다. 그 결과 유도된 동적강도행렬이 비동질공간에 대한 특성을 적절하게 반영하는 것으로 나타났다.

Flexural stiffness of steel-concrete composite beam under positive moment

  • Ding, Fa-Xing;Liu, Jing;Liu, Xue-Mei;Guo, Feng-Qi;Jiang, Li-Zhong
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1369-1389
    • /
    • 2016
  • This paper investigates the flexural stiffness of simply supported steel-concrete composite I-beams under positive bending moment through combined experimental, numerical, and different standard methods. 14 composite beams are tested for experimental study and parameters including shear connection degree, transverse and longitudinal reinforcement ratios, loading way are also investigated. ABAQUS is employed to establish finite element (FE) models to simulate the flexural behavior of composite beams. The influences of a few key parameters, such as the shear connection degree, stud arrangement, stud diameter, beam length, loading way, on the flexural stiffness is also studied by parametric study. In addition, three widely used standard methods including GB, AISC, and British standards are used to estimate the flexural stiffness of the composite beams. The results are compared with the experimental and numerical results. The findings have provided comprehensive understanding of the flexural stiffness and the modelling of the composite beams. The results also indicate that GB 50017-2003 could provide better results in comparison to the other standards.