• 제목/요약/키워드: Stiffness Estimation

검색결과 346건 처리시간 0.026초

푸리에 급수를 이용한 엔드밀링 절삭력 및 공구변형 표현 (Closed Form Expression of Cutting Forces and Tool Deflection in End Milling Using Fourier Series)

  • 류시형
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.76-83
    • /
    • 2006
  • Machining accuracy is closely related with tool deflection induced by cutting forces. In this research, cutting forces and tool deflection in end milling are expressed as a closed form of tool rotational angle and cutting conditions. The discrete cutting fores caused by periodic tool entry and exit are represented as a continuous function using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping part are considered together far cutting forces and tool deflection estimation. Compared with numerical methods, the presented method has advantages in prediction time reduction and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the form accuracy is easily predicted from tool deflection curve.

손상지수를 이용한 단순보의 손상추정 I. 이론 및 수치 해석 (Damage Estimation of Simple Beams using Damage Index : I. Theory and Numerical Analysis)

  • 김학수;장동일
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.43-50
    • /
    • 1996
  • Damage estimation of bridge structures has recently received considerable attention in the light of maintenance and retrofitting of existing structures under service loads and after natural disasters. A method for the damage assessment of bridge structures using a damage index technique is presented. The damage index is formulated for the changes of modal properties due to the change of the stiffness. In order to verify the method which is presented, numerical analysis is conducted on simple beam models. Each FE model is subjected to different damage scenarios, i.e., locations and degrees of damage. Results of numerical analysis indicate that the proposed method is capable of detecting inflicted damages using the eigenvalue of only first mode.

  • PDF

인간 임피던스 추정을 이용한 인간과 로봇의 협조 작업 (Human-Robot Collaboration Work Via Human Impedance Estimation)

  • 서동수;홍석규;이병주;서일홍
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.132-140
    • /
    • 1999
  • This paper treats the estimation of human impedance and their application to human-robot collaboration work. Initially, we perform an experiment at which the human becomes a slave and the robot behaves like a master having F/T sensor on its end. The human impedance expressed in terms of mass, damping, and stiffness properties are estimated based on the force data measured by F/T sensor and the commanded position data of the robot. To show the effectiveness of the estimated human impedance, we perform the second experiment at which the roles of the human and the robot are reversed. It is shown that the robot using the estimated human impedance follows the trajectory commanded by human very smoothly.

  • PDF

A16061-T6의 선삭가공에서 가공조건에 따른 절삭특성 평가 (The Machinability Estimation Depending on Cutting Condition in A16061-T6 Turning Operations)

  • 최태규;김정석;박진효;임학진
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.675-680
    • /
    • 2009
  • Because of high specific stiffness, the aluminum alloy has been used for various industry field. Specially, the heat-treated aluminum alloy is difficult-to-machine material and machining test is necessary to evaluate and improve the machinability. In order to manufacture the functional part, appropriate cutting condition is selected by considering surface quality, machining time, and workpiece deflection by cutting force. In this investigation, the machinability of A16061-T6 is estimated by changing cutting conditions. The variable cutting conditions are cutting speed, depth of cutting, and feed rate. The estimation is done by analysis of cutting force, surface roughness, and surface shape according to the change of cutting conditions.

  • PDF

엔드밀 가공에서 푸리에 급수를 이용한 절삭력 및 공구변형 표현 (Representation of cutting forces and tool deflection in end milling using Fourier series)

  • 류시형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.781-785
    • /
    • 2005
  • Cutting forces and tool deflection in end milling are represented as the closed form of tool rotational angle and cutting conditions. The discrete cutting forces caused by tool entry and exit are continued using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping pan are considered for cutting forces and tool deflection estimation. Compared to numerical methods, the presented method has advantages in short prediction time and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the ferm accuracy is easily predicted by tool deflect ion curve.

  • PDF

회전 유니트의 회전정밀도 예측 기술 (Estimation of Rotational Motion Accuracy for Rotary Units)

  • 황주호;심종엽;박천홍
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.127-133
    • /
    • 2015
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. Those are usually due to the imperfectness of bearings, stiffness of spindle, assembly errors, external force or unbalance of rotors. The error motions of the spindle have been needed to be decreased to desired goal of spindle's performance. The level of error motion is needed to be estimated during the design and assembly process of the spindle. In this paper, the estimation method for the five degree of freedom (5 D.O.F) error motions for rotary units such as a spindle and rotary table are suggested. To estimate the error motions of the rotary unit, waviness of bearings and external force model were used as input data. The estimation model considers geometric relationship and force equilibrium of the five degree of the freedom motions.

구조물의 회복탄력성 기반 성능평가법에 대한 고찰 및 적용 방안에 관한 연구 (A Study on the Resilience-Based Performance Evaluation Method of Structures and Their Application Plan)

  • 김유성;강주원;이준호
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.159-167
    • /
    • 2020
  • The resilience performance evaluation method of a structure can evaluate the ability to recover after an earthquake disaster, and this study deals with the consideration and introduction of the resilience performance evaluation method. The resilience evaluation method can be expressed as a quantified number by constructing a loss estimation model and a recovery evaluation model. The recovery evaluation model should consider downtime in addition to the repair time, and the loss estimation model should consider not only direct loss to structures and non-structures, but also indirect loss due to functional loss of the building. In addition, to build a loss estimation model, the structure should be simplified to perform an efficient analysis. Therefore, in this study, the equivalent terminal induction system proposed cantilever-type and rahmen-type SDOF, and it is evaluated somewhat conservatively compared to the example structure, and it is judged that there is a need to improve the hysteresis characteristics by applying the stiffness reduction factor of the SDOF model.

차량 롤 주행안정성 향상을 위한 RSC (Roll Stability Control) 성능 해석에 관한 연구 (A Study on the Performance Analysis of RSC (Roll Stability Control) for Driving Stability of Vehicles)

  • 권성진
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.257-263
    • /
    • 2022
  • Active stabilizers use signals such as steering angle, yaw rate, and lateral acceleration to vary the roll stiffness of the front and rear suspension depending on the vehicle's driving conditions, and are attracting attention as RSC (Roll Stability Control) system that suppresses roll when turning and improves ride comfort when going straight. Various studies have been conducted in relation to active stabilizer bars and RSC systems. However, accurate modeling of passive stabilizer model and active stabilizer model and vehicle dynamics analysis result verification are insufficient, and performance result analysis related to vehicle roll angle estimation and electric motor control is insufficient. Therefore, in this study, an accurate vehicle dynamics model was constructed by measuring the passive/active stabilizer bar model and component parameters. Based on this, the analysis result with high reliability was derived by comparing the roll angle estimation algorithm based on the lateral acceleration and suspension of the vehicle with the actual vehicle driving test result. In addition, it was intended to accurately analyze the motor torque characteristics and roll reduction effects of the electric motor-driven RSC system.

전단벽식 공동주택의 부재 물성치 및 크기 변화에 따른 슬래브 수직진동 저감 효과 (Vertical Vibration Decrease Effect of Slab in Shear-Wall Structures According to Property and Size of Structural Members)

  • 전호민;유승민
    • 한국주거학회논문집
    • /
    • 제17권3호
    • /
    • pp.61-69
    • /
    • 2006
  • Vertical vibrations on the slab of buildings are affected by types of vibration sources, transfer paths, and the material property and the size of members. Among these parameters, the vibration sources and the transfer path can not be controlled, but the property and the size of members can be controlled in the phase of design the members. In this study, the vibration responses according to the property and size of members were obtained by using a prediction program based on dynamic-stiffness matrix. Three parameters which are not usually considered as major factors for architecral planning were selected fur these analyses. They are the strength of materials, the thickness of wall and the thickness of slab. The ground vibration source located near a building was used as vibration input data in the analyses. This study has its originality on presenting appropriate property and size of structural members in order to reduce vertical vibration of slab in shear-wall structures. Analysing the results from the vibration estimation program according to the variations of parameters, the appropriate ratio among the sizes of structural members were proposed. From these results, the vibration level on the slab which is not constructed yet would be predicted and the vibration peak level can be reduced or shifted into the desirable frequency range. Therefore, the vertical vibration could be controlled in the phase of designing buildings.

다이캐스팅 보의 등가 기공결함을 고려한 강도평가 (Strength Estimation of Die Cast Beams Considering Equivalent Porous Defects)

  • 박문식
    • 대한기계학회논문집A
    • /
    • 제41권5호
    • /
    • pp.337-343
    • /
    • 2017
  • 각종 기공과 같은 결함을 허용하는 다이캐스팅 부품의 강도를 현장 수준에서 평가할 수 있는 이론적 방법을 제안한다. 결함을 갖는 부재의 탄성시험을 통해 강성도를 구하고 이를 결함이 없는 이론적 강성도와 비교함으로써 등가 기공률을 산출한다. 등가 기공률 식은 Eshelby의 함유이론으로부터 유도하였다. 산출된 등가 기공률은 Mori-Tanaka 법을 이용하여 기공결함을 포함하는 재료의 응력-변형률 선도를 그리기 위하여 사용된다. 본 연구에서는 Hollomon 변형경화 모델을 사용하였다. 이 응력-변형률 선도를 이용하면 균일분포의 기공결함을 갖는 다이캐스팅 부재의 강도를 평가할 수 있게 된다. 등가 기공률을 고려한 하나의 이론해로서 직사각형 단면의 다이캐스팅 보에 대한 삼점 굽힘의 탄소성 강도를 소성힌지의 방법으로 유도하였다.