• Title/Summary/Keyword: Stiffness Effect

Search Result 2,339, Processing Time 0.025 seconds

Transferred Load Reduction effect on Paved Track Roadbed with Low Elastic Base Plate Pad (포장궤도에서의 저탄성패드 적용에 따른 전달하중 저감 효과)

  • Lee, Il-Wha;Kim, Eun;Kim, Chang-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1230-1235
    • /
    • 2011
  • The track stiffness is determined by the pad stiffness. Low elastic pad is the most effective track component on the basis of stress-displacement characteristics, dynamic response and fatigue characteristics. It is more important in case of concrete track. The main objective of this paper is to confirm the reduction effect of train load, which transfer to roadbed through track. To achieve this object, numerical analysis and real scale repeated loading test was performed. The load reduction effect of low elastic pad was analyzed by using displacement, stress and strain ratio of the paved track at each point.

  • PDF

Vehicular Impact Loading on with Laminated Rubber Bearing (탄성받침을 사용한 도로교의 충격하중특성 분석)

  • 김상효;허진영;신용준;이용선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.230-237
    • /
    • 2000
  • The purpose of this study is to evaluate the dynamic behavior of highway bridge due to moving vehicle load, considering the effect of laminated rubber bearing. Dynamic behaviors of bridge considering the effect of bearings are studied with 3-dimensional bridge and vehicle models. To analyze the effect of bearings on the dynamic behaviors of superstructures of bridges, laminated rubber bearing is modeled as 3-dimensional frame element with equivalent stiffness and damping, and the models are included in the bridge analysis model. The results from the analytical models with laminated rubber bearing show a significant effects on dynamic responses and more complex vibration characteristics compared with the results from the bridge with pot bearings. Generally, larger dynamic amplification factors are obtained in the case of laminated rubber bearing, which is mainly due to the smaller torsional stiffness of the bridge with laminated rubber bearing. It can be recommended that were careful consideration on the vibration of bridges and dynamic load allowance in design are needed when adopting laminated rubber bearing.

  • PDF

Failure Behavior and Tension Stiffening of RC Tension Members (철근콘크리트 인장부재의 인장강성 및 파괴거동에 관한 연구)

  • 박제선;이봉학;윤경구;홍창우;이주형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.737-742
    • /
    • 1998
  • The tension stiffening effect is defined as the increase in stiffness in reinforced concrete member due to the stiffness provided by concrete between cracks. If this is disregarded in analysis of reinforced concrete members, especially at the level of service loads, member stiffnesses may be underestimated considerably. This paper presents on the failure behavior and tension stiffening of RC tension test with main variables such as concrete strength, rebar diameter and strength. The tension stiffening was analyzed from the load-displacement relationship by ACI code and the proposed by Collins & Mitchell. In summary, the effect of tension stiffening decrease rapidly as the rebar diameter increase, rebar strength increase, and concrete strength increase. The effect of tension stiffening on RC member is the biggest near the behavior of concrete cracking and decrease as the load close to the breaking point. Thus, the tension stiffening should be considered for the precise analysis near the load of concrete cracking.

  • PDF

Analysis of Pre-Swirl Effect for Plain-Gas Seal Using CFD (CFD를 사용한 비접촉식 가스 실의 입구 선회류 영향 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.26-31
    • /
    • 2013
  • In present 3D CFD study, the method for determining leakage and rotordynamic coefficients of a plain-gas seal is suggested by using the relative coordinate system for steady-state simulation. In order to find the effect of pre-swirl speed at seal inlet, pre-swirl velocity is included as a parameter. Present analysis is verified by comparison with results acquired from Bulk-flow analysis code and published experimental results. The results of 3D CFD rotordynamic coefficients of direct stiffness(K) and cross-coupled stiffness(k) show improvements in prediction. As pre-swirl speed at seal inlet increases, k also increases to destabilize system. However, pre-swirl speed at seal inlet does not show sensitivity to the leakage and rotordynamic coefficients of K and damping(C).

The Effect of the Area Ratio and the Distance Ratio on Bending Stiffness of Two Rectangular Spot-Welded Plates (면적비와 거리비가 점용접된 두 사각평판의 굽힘강성에 미치는 영향)

  • Han, Geun-Jo;Ahn, Sung-Chan;Shim, Jae-Joon;Han, Dong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.387-392
    • /
    • 2003
  • The mechanical behavior of two rectangular spot-welded plates under bending is investigated in detail. The equivalent thickness of spot-welded plates is introduced in this study and used in explaining the results. The focus of the analysis is to evaluate the effect of spot-welding from the view point of equivalent thickness. The investigation of deflection has been performed as comparing the result from finite element analysis with the measured data of the spot-welded plates for various parameters, such as aspect ratio, area ratio, and distance ratio of spot-welding points. The effect of spot-welding is as large as 62%(at r=1.0) when the area ratio of spot-welding point is just 4.52%.

Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of Tower Stiffness (타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석)

  • Choo, Heon-Ho;Sim, Jae-Park;Ryu, Gyeong-Joong;Kim, Dong-Hyun;Kim, Bong-Yung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.602-606
    • /
    • 2011
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent reduced elastic tower is supported to the VAWT so that the elastic stiffness effect of the tower can be reflected to the present vibration experiment. Various excitation sources with aerodynamic forces are considered and the dominant operating vibration phenomena are physically investigated in detail.

  • PDF

Dynamic Analysis of Multi-Span Continuous Bridges under Combined Effects of Earthquake and Local Scour (지진과 세굴의 복합적인 영향을 받는 연속교의 동적거동분석)

  • 김상효;마호성;이상우;심정욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.166-173
    • /
    • 2002
  • Seismic bridge failure due to the combined effects of earthquake and local scour are examined in probabilistic perspectives. The seismic responses of multi-span continuous bridge with deep foundations are evaluated with a simplified mechanical model. The probabilistic local scour depths around the deep foundations are estimated by using the Monte Carlo simulation. From the simulation results, it is found that seismic responses of a bridge slightly increase due to the local scour effect. The effect of local scour on the global motion of the continuous bridge is found to be significant under weak seismic intensity. In addition, the duration to regain its original foundation stiffness is critical in estimating the probability of foundation failure under earthquake. Therefore, the duration in recovering the foundation stiffness should be determined reasonably and the safely of the whole bridge system should be evaluated by considering the scour effect.

  • PDF

Effect of masonry infilled panels on the seismic performance of a R/C frames

  • Aknouche, Hassan;Airouche, Abdelhalim;Bechtoula, Hakim
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.329-348
    • /
    • 2019
  • The main objective of this experimental research was to investigate the Seismic performance of reinforced concrete frames infilled with perforated clay brick masonry wall of a type commonly used in Algeria. Four one story-one bay reinforced concrete infilled frames of half scale of an existing building were tested at the National Earthquake Engineering Research Center Laboratory, CGS, Algeria. The experiments were carried out under a combined constant vertical and reversed cyclic lateral loading simulating seismic action. This experimental program was performed in order to evaluate the effect and the contribution of the infill masonry wall on the lateral stiffness, strength, ductility and failure mode of the reinforced concrete frames. Numerical models were developed and calibrated using the experimental results to match the load-drift envelope curve of the considered specimens. These models were used as a bench mark to assess the effect of normalized axial load on the seismic performance of the RC frames with and without masonry panels. The main experimental and analytical results are presented in this paper.

Influence of specimen height on the shear behavior of glass beads in the direct shear test

  • Young-Ho Hong;Yong-Hoon Byun;Jong-Sub Lee
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.461-472
    • /
    • 2023
  • A box scale affects the shear behavior of soils in the direct shear test. The purpose of this study is to investigate the scale effect on the shear behavior of dilative granular materials by testing specimens of different heights placed in a type C shear box. Experimental tests were performed on specimens composed of glass beads with different heights and equal initial void ratios. Results showed that the peak friction and dilation angles linearly increased with the specimen height; however, the residual friction angle remained relatively constant. Similarly, the shear stiffness increased with the specimen height, rapidly reaching its peak state. Height does not have a significant effect on the total volume changes; nevertheless, a high aspect ratio can be assumed to result in global and homogeneous failure. The results and interpretations may be used as reference for recommending shear box scale in direct shear tests.

Study on the Effect of the Bearing Capacity Support of tunnel by Steel Rib in the Colluvial Soils (붕적층 지반에 적용된 터널에서 강재의 지보효과에 대한 연구)

  • Ahn, Sung-Youll;Lee, Jae-Young;Ahn, Kyung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • The entrance and the exit structures of tunnels are often constructed on unfavorably soft soils (colluvial soils) as a result of environment-friendly design highlighted in recent years. For construction of such a tunnel, it is essential to secure sufficient bearing capacity of the lining supports as well as that of the surrounding soils. In this regard, H-shape steel-ribs with high stiffness are commonly used for lining supports. However, it was the past convention to ignore the effect of the steel-ribs in numerical evaluation of the structural safety. This study is intended to show how the shotcrete stresses are relieved by the steelribs, on the basis of numerical data obtained from 3-dimensional finite element analysis. The effect of steel ribs to shotcrete stresses is examined at different levels of application rates, i.e., 0%, 50%, 75% and 100% of the total stiffness. The data obtained from numerical analysis was compared with in-situ measurement. The effect of st eel ribs to shotcrete stresses was verified and appropriate total stiffness was proposed in the range of 50%~75%.

  • PDF