• Title/Summary/Keyword: Stiffness Design

검색결과 3,126건 처리시간 0.026초

Design and Analysis of Kart Chassis Frame for Bending and Torsional Stiffness (굽힘과 비틀림 강성을 갖는 카트 섀시 프레임의 설계와 해석)

  • 장성국;강신하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제11권4호
    • /
    • pp.226-231
    • /
    • 2003
  • There have been many attempts to make kart chassis domestically to lower the price of complete kart. However nobody made a successful chassis due to the lack of understanding the characteristics of kart chassis frame. In this work, a baseline chassis frame under the bending and torsional load is studied. Design target is that the baseline chassis frame is quite adequate not only for the beginners but also for the beginning racers. Results from the analysis are used as a guide to design or modify the baseline chassis with the goal of proper torsional stiffness. Minimum increase in weight is being forced. As a result, the baseline chassis frame was designed, made, and tested. Based on the design results, complete karts are being manufactured by the small 1 size domestic company and these karts are being sold and run in the market.

Development of Measurement Device for Bending Stiffness of Footwear (신발의 굽힘강성 측정 장비의 개발)

  • Lee, Jong-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제12권3호
    • /
    • pp.1078-1084
    • /
    • 2011
  • In design of sport footwear, bending stiffness of its toe part is an important factor though it can be hardly measured. This paper introduces a device for measuring the bending stiffness. The device is simply designed with aluminum frames, one AC motor, two load-cells, one encoder and control hardwares. The mechanism measuring the bending moment of a shoe is described. Then, it was used to observe how the midsole material and design of a sports shoe affect on its bending stiffness. For the experiments, various specimens prepared, where each midsole of the specimens is different in terms of material, thickness and hardness. With those specimens, experiments were performed by using the device and then the bending stiffness was computed by applying the least square curve fitting after the bending moment data were measured. The specimen with Poly-urethane(PU) midsole has the higher bending stiffness than the one with Phylon(PH) midsole, and the midsole thickness affects more on the bending stiffness than the midsole hardness. Based on those results, it can be concluded that the measurement device can provide consistent bending stiffness data to sports footwear and the bending stiffness of a footwear measured by the developed device can be used as a major parameter in the footwear design.

Stiffness effect of fitting interference for a shrunk rotor (열박음 로터에서 간섭량의 강성 효과)

  • 김영춘;박희주;박철현;김경웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.319-324
    • /
    • 2003
  • In general industrial rotating machinery is operated under 3,600 rpm as rotating speed and designed to have critical speed that is above operating speed. So, there was no problem to operate rotating machine under critical speed. But nowadays, they should be operated more than the frist critical speed as usual with the trend of high speed, large scale and hish precision in industries. In case of the large rotor assembly as the trend of large scale, using fitting method of disk or cylinder on shaft is rising for the convenience of assembly and cutting down of manufacturing cost. The shrink fitting is used to assemble lamination part on shaft for manufacturing of rotor of motor or generator in many cases and also is widely used for other machinery. In rotating system, which is compose of rotor and bearing, the critical speed is determined from inertia and stiffness for the rotor and bearings. In case of fitting assembly, analysis and design of the rotor is not easy because the rotor stiffness is determined depend on a lot of factors such as shaft material/dimension, disk material/dimension and assembled interference etc. Therefore designer who makes a plan for hish-speed rotating machine should design that the critical speed is located out of operating range, as dangerous factors exist in it. In order to appropriate design, an accurate estimation of stiffness and damping is very important. The stiffness variation depend on fitting interference is a factor that changes critical speed and if it's possible to estimate it, that Is very useful to design rotor-bearing system. In this paper, the natural frequency variation of the rotor depends on fitting interference between basic shaft and cylinder is examined by experimentation. From the result, their correlation is evaluated quantitatively using numerical analysis that is introduced equivalent diameter end the calculation criteria is presented for designer who design fitting assembly to apply with ease for determination of appropriate interference.

  • PDF

Comparison of methods to estimate storey stiffness and storey strength in buildings

  • A.R.Vijayanarayanan;M. Saravanan;M. Surendran
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.433-447
    • /
    • 2024
  • During earthquakes, regular buildings perform better than irregular buildings. In general, seismic design codes define a regular building using estimates of Storey Stiffness and Storey Strength. At present, seismic design codes do not recommend a specific method to estimate these parameters. Consequently, any method described in the literature can be applied to estimate the aforementioned parameters. Nevertheless, research has demonstrated that storey stiffness and storey strength vary depending on the estimation method employed. As a result, the same building can be regular or irregular, depending on the method employed to estimate storey stiffness and storey strength. Hence, there is a need to identify the best method to estimate storey stiffness and storey strength. For this purpose, the study presents a qualitative and quantitative evaluation of nine approaches used to determine storey stiffness. Similarly, the study compares six approaches for estimating storey strength. Subsequently, the study identifies the best method to estimate storey stiffness and storey strength using results of 350 linear time history analyses and 245 nonlinear time history analyses, respectively. Based on the comparison, it is concluded that the Fundamental Lateral Translational Mode Shape Method and Isolated Storey Method - A Particular Case are the best methods to estimate storey stiffness and storey strength of low-to-mid rise buildings, respectively.

Effective stiffness in regular R/C frames subjected to seismic loads

  • Micelli, Francesco;Candido, Leandro;Leone, Marianovella;Aiello, Maria Antonietta
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.481-501
    • /
    • 2015
  • Current design codes and technical recommendations often provide rough indications on how to assess effective stiffness of Reinforced Concrete (R/C) frames subjected to seismic loads, which is a key factor when a linear analysis is performed. The Italian design code (NTC-2008), Eurocode 8 and ACI 318 do not take into account all the structural parameters affecting the effective stiffness and this may not be on the safe side when second-order $P-{\Delta}$ effects may occur. This paper presents a study on the factors influencing the effective stiffness of R/C beams, columns and walls under seismic forces. Five different approaches are adopted and analyzed in order to evaluate the effective stiffness of R/C members, in accordance with the scientific literature and the international design codes. Furthermore, the paper discusses the outcomes of a parametric analysis performed on an actual R/C building and analyses the main variables, namely reinforcement ratio, axial load ratio, concrete compressive strength, and type of shallow beams. The second-order effects are investigated and the resulting displacements related to the Damage Limit State (DLS) under seismic loads are discussed. Although the effective stiffness increases with steel ratio, the analytical results show that the limit of 50% of the initial stiffness turns out to be the upper bound for small values of axial-load ratio, rather than a lower bound as indicated by both Italian NTC-2008 and EC8. As a result, in some cases the current Italian and European provisions tend to underestimate second-order $P-{\Delta}$ effects, when the DLS is investigated under seismic loading.

Conceptual design of ultra-high performance fiber reinforced concrete nuclear waste container

  • Othman, H.;Sabrah, T.;Marzouk, H.
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.588-599
    • /
    • 2019
  • This research presents a structural design of high-level waste (HLW) container using ultra-high performance fiber reinforced concrete (UHP-FRC) material. The proposed design aims to overcome the drawbacks of the existing concrete containers which are heavy, difficult to fabricate, and expensive. In this study, the dry storage container (DSC) that commonly used at Canadian Nuclear facilities is selected to present the proposed design. The design has been performed such that the new UHP-FRC alternative has a structural stiffness equivalent to the existing steel-concrete-steel container under various loading scenarios. Size optimization technique is used with the aim of maximizing stiffness, and minimizing the cost while satisfying both the design stresses and construction requirements. Then, the integrity of the new design has been evaluated against accidental drop-impact events based on realistic drop scenarios. The optimization results showed: the stiffness of the UHP-FRC container (300 mm wall thick) is being in the range of 1.35-1.75 times the stiffness of existing DSC (550 mm wall thick). The use of UHP-FRC leads to decrease the container weight by more than 60%. The UHP-FRC container showed a significant enhancement in performance in comparison to the existing DSC design under considered accidental drop impact scenarios.

Two-dimensional rod theory for approximate analysis of building structures

  • Takabatake, Hideo
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.1-19
    • /
    • 2010
  • It has been known that one-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. If the structure is composed of distinct constituents of different stiffness such as coupled walls with opening, structural behavior is significantly governed by the local variation of stiffness. This paper proposes an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. The governing equation for the two-dimensional rod theory is formulated from Hamilton's principle by making use of a displacement function which satisfies continuity conditions across the boundary between the distinct structural components in the transverse direction. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures.

Analysis of Axial Load Characteristics of Air-Dynamic Bearings of Various Curvatures (다양한 곡률을 가진 공기 동압 베어링의 축방향 부하특성 해석)

  • 최우천;신용호;최정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제17권3호
    • /
    • pp.129-135
    • /
    • 2000
  • Air-dynamic bearings are increasingly used in supporting small high-speed rotating bodies. This study investigates the effects of design parameters on the axial stiffness of spiral-grooved air bearings of various curvatures. Design parameters are fundamental clearance, groove depth, and bearing number. The pressure distribution at the clearance between the stator and rotor of the bearing is obtained by solving the Reynolds equation, and the supporting load and the axial linear stiffness are calculated from the pressure distribution. It is found that a larger curvature increases the axial linear stiffness more and that there exist an optimal groove depth for the linear stiffness of the air bearing. It is also found that the linear stiffness has a linear relationship with the bearing number.

  • PDF

Study on air pocket design of thrust bearing for high-stiffness air spindle (공기 주축 고강성화를 위한 스러스트 베어링의 에어포켓 설계에 관한 연구)

  • Han, Young-Chil;Lee, Chae-Moon;Lee, Deug-Woo;An, Dae-Geun
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.998-1002
    • /
    • 2003
  • This paper investigates the characteristics of stiffness and load in the thrust bearing of spindle which could be changeable according to the groove shape of inlet, in order to design a high-stiffness air bearing by selecting a optimal groove shape. In experiments, dead weight and displacement sensor are used to measure the load carrying capacity and the stiffness respectively. Various shapes and different depth of groove of self-restrictor are used as experimental conditions. Comparative study between the theoretical value and the practical one by measuring the value of stiffness and load of the thrust bearing is performed.

  • PDF

A Characteristic Analysis on the Elastic Stiffness of the Tapered-width Leaf Type Holddown Spring Assembly Designed in KOFA's Design Space

  • Song, Kee-Nam;Seo, Keum-Seok
    • Nuclear Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.583-593
    • /
    • 1996
  • An elastic stiffness formula of a leaf type holddown spring(HDS) assembly with a uniformly tapered width from $w_0$ to $w_14$ over the length, has been analytically derived based on Euler beam theory and Castigliano's theorem. Elastic stiffnesses of the tapered-width leaf type HDSs(TW-HDSs) designed in the same dimensional design spaces as the KOFA HDSs have been evaluated from the derived formula, in addition, a parametric study on the elastic stiffness of the TW-HDSs has been carried out. Analysis results show that, as the effects of axial and shear force on the elastic stiffness of He TW-HDSs have been 0.15~0.21% of the elastic stiffness, most of the elastic stiffness is attributed to the bending moment, and that elastic stiffnesses of the TW-HDSs have been about 32~33% higher than those of the KOFA HDSs. It is found that the number of leaves composing a HDS assembly could be lessened by one under the conditions that the TW-HDSs have been adopted in KOFA.

  • PDF