• 제목/요약/키워드: Stiffness Coefficients.

검색결과 379건 처리시간 0.029초

자기베어링 시스템을 가진지로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명 (Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter)

  • Kim, Keun-Joo;Lee, Chong-Won
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.342.1-342
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. (omitted)

  • PDF

Inelastic analysis of RC beam-column subassemblages under various loading histories

  • You, Young-Chan;Yi, Waon-Ho;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.69-80
    • /
    • 1999
  • The purpose of this study is to propose an analytical model for the simulation of the hysteretic behavior of RC (reinforced concrete) beam-column subassemblages under various loading histories. The discrete line element with inelastic rotational springs is adopted to model the different locations of the plastic hinging zone. The hysteresis model can be adopted for a dynamic two-dimensional inelastic analysis of RC frame structures. From the analysis of test results it is found that the stiffness deterioration caused by inelastic loading can be simulated with a function of basic pinching coefficients, ductility ratio and yield strength ratio of members. A new strength degradation coefficient is proposed to simulate the inelastic behavior of members as a function of the transverse steel spacing and section aspect ratio. The energy dissipation capacities calculated using the proposed model show a good agreement with test results within errors of 27%.

마찰계수 급상승 특성이 실의 로터다이나믹 특성에 미치는 영향 (The Effect of Surface-Friction-Factor-Jump Characteristics on Retordynamics of a Seal)

  • 하태웅
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.197-203
    • /
    • 1996
  • This study is to analyze the rotordynamic effect of surface-friction- factor characteristics on an annular seal. The honeycomb geometry which shows friction-factor-jump phenomena is used in this study. A rotordynamic analysis for a contered annular seal has been developed by incorporating empirical friction-factor model for honeycomb stator surfaces. The results of the analysis for the honeycomb seal showing the friction-factor jump is compared to the non- friction-factor-jump case. The results yield that the friction-factor-jump decreasesdirect stiffness and cross coupled stiffness coefficients, and increases damping coefficient to stabilize rotating machinery in a rotordynamic point of view. The analysis of the honeyeomb seal for the friction-factor-jump case shows reasonably good compared to experimental results, especially, for cross coupled and damping coeffcients.

  • PDF

유막 저어널 베어링이 회전체에 미치는 진동 특성에 관한 연구 (A Study on the Vibration Characteristics of Rotor System with Fluid Film Bearing)

  • 박성환;오택열
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.37-44
    • /
    • 2002
  • The dynamic behavior of rotor-bearing system has been investigated using finite element method. A procedure is presented for dynamic modeling of rotor-bearing system which consists of shaft elements, rigid disk, flexible bearing and support structure. A finite element model including the effects of rotary inertia, shear deformation, gyroscopic moments is developed. Linear stiffness and damping coefficients are calculated for 2 lobe sleeve bearing. The whirl frequency, mode shape, stability and unbalance response of rotor system including effects of bearing coefficient and support structures are calculated.

유정압 테이블의 동적 Modeling에 관한 연구 (A Study on the Dynamic Modeling of a Hydrostatic Table)

  • 노승국;이찬홍;박천홍
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.150-156
    • /
    • 1998
  • In this paper, a 3-DOF(Degree Of Freedom) rigid body model is developed for dynamic analysis of a hydrostatic table. The dynamic coefficients, stiffness and damping constant of each pad are calculated from the mass flow continuity condition. The validity of this model is examined in theoretical and experimental method. The dynamic behavior when mass unbalances and local variations of stiffness and damping of pads present is analyzed for real applications of hydrostatic table. Since the theoretical and experimental results show goof agreement. it can be said that the 3-DOF rigid body model is useful for the dynamic model of the table. The analysis reveals that the pitching motion is the dominant mode of vibration, It also reveals that unbalanced loads can increase amplitude of tilting motion and reduce natural frequencies and damping capacity of the hydrostatic table.

  • PDF

모의실험을 통한 완충재별 진동전달량과 동적특성과의 상관성 분석에 관한 연구 (Analysis of Correlation between the Vibration Transmissions and the Dynamic Characteristics for Floor Impact Sound Insulation Materials through Model Test)

  • 김흥식;주시웅;진필화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1425-1431
    • /
    • 2006
  • In this study, An analysis of correlation between the vibration transmissions and the dynamic characteristics for floor impact sound insulation materials through model test was carried out. As the results, the correlation coefficients between the vibration transmissions and the dynamic characteristics for floor impact sound insulation materials were over 0.8 at the heavy and light floor impact source and less dynamic stiffness was more effective in reducing the vibration transmission.

  • PDF

MR유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 하종용;안영공;양보석;정석권;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF

공기포일베어링에 지지된 마이크로가스터빈의 회전체동역학적 설계 (Rotordynamic Design of the Micro Gas Turbine Supported by Air Foil Bearings)

  • 김영철;한정완;김경웅;김수용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.662-667
    • /
    • 2003
  • This paper presents a performance analysis of the 1st generation bump foil journal bearings for the micro gas turbine TG75. Static performances such as load capacity and attitude angle are estimated by using soft elasto-hydrodynamic analysis technique, and dynamic performances such as stiffness and damping coefficients are estimated by perturbation method. Rotordynamic analysis for TG75 is performed by using the bearing analysis results. TG75 rotor has 2 horizontal and vertical directional natural modes due to the bearing stiffness characteristics. TG75 rotor will be stably operated between the 1st bending mode at 33000cpm and the 2nd bending mode at 85500cpm. Unbalance response analysis results satisfy the API vibration criteria.

  • PDF

Numerical Analysis on Deformation of Submerged Structures using 2-Dimensional VOF-DEM Model

  • Kim, Mi-Kum;Kim, Chang-Je
    • 한국항해항만학회지
    • /
    • 제31권9호
    • /
    • pp.785-791
    • /
    • 2007
  • In this paper we proposed a model that the deformation of the submerged rubble mound breakwaters composed with materials of various size, induced by wave action, can be computed. The water particle kinematics by waves in porous mound structure are computed by CADMAS-SURF, then the deformation of structure is computed using DEM module. To investigate the interaction of wave and sectional deformation of structures, analysis is accomplished by two steps. Analysis at the first step is executed with incipient mound. And analysis at the second step is executed with deformed mound by wave action. Furthermore, behaviors of materials are influenced by various properties such as the contact stiffness and the friction angle. Therefore, in order to present the behavior of the element caused by various properties, computations are accomplished with random coefficients by using the Monte Carlo simulation.

MR 유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 안영공
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.490-495
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic field strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.