• 제목/요약/키워드: Stiffness Analysis

검색결과 4,936건 처리시간 0.027초

전달 강성계수법에 의한 격자형 구조물의 자유 진동 해석 (Free Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method)

  • 문덕홍;최명수;강화중
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.361-368
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful tool for structural analysis. However, it is necessary to use a large amount of computer memory and computation time because the FEM resuires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For overcoming this problem, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the nodal dynamic stiffness coefficient. And we confirmed the validity of TSCM through numerical computational and experimental results for a lattice type structure.

  • PDF

지중매설 연성관의 관강성 추정 (Pipe Stiffness Prediction of Buried Flexible Pipes)

  • 박준석;김선희;김응호
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.13-20
    • /
    • 2012
  • In this paper, we present the result of an investigation pertaining to the pipe stiffness of buried flexible pipes. Pipe stiffness (PS) formula for the parallel plate loading condition is derived based on the elasticity theory. Vertical and horizontal displacements are also derived. Vertical deflection is always larger than the horizontal deflection because some of energy due to overburden load is stored in the pipe but the difference is negligibly small. In the study, mechanical properties of the flexible pipes produced in the domestic manufacturer are tested and the results are reported in this paper. In addition, pipe stiffness is determined by the parallel plate loading tests and the finite element analysis. The difference between test and analysis is less than 14% although there are significant variations in the mechanical properties of the pipe material. Therefore, it was found that the finite element analysis can be used to predict the pipe stiffness instead of conducting parallel plate loading test.

비동질 탄성 무한공간에 대한 비례경계유한요소법의 동적강도행렬 (Dynamic Stiffness of the Scaled Boundary Finite Element Method for Non-Homogeneous Elastic Space)

  • 이계희
    • 한국전산구조공학회논문집
    • /
    • 제23권2호
    • /
    • pp.165-173
    • /
    • 2010
  • 본 논문에서는 비동질 탄성무한공간에 대한 비례경계유한요소법의 동적강도행렬을 해석적으로 유도하였다. 해석영역의 비동질성은 비동질파라메터를 지수로 하는 멱함수로 고려하였다. 동적강도행렬은 진동수영역에서 다항식으로 점근전개한 후, 방사조건을 만족시키도록 하여 각 다항식의 계수를 구하는 과정을 통하여 유도되었다. 얻어진 동적강도행렬의 타당성을 검증하기 위해 정확해가 알려져 있는 대표적인 문제에 대하여 비동질파라메터의 값을 변화시키면서 수치해석을 수행하였다. 그 결과 유도된 동적강도행렬이 비동질공간에 대한 특성을 적절하게 반영하는 것으로 나타났다.

Determining elastic lateral stiffness of steel moment frame equipped with elliptic brace

  • Habib Ghasemi, Jouneghani;Nader, Fanaie;Mohammad Talebi, Kalaleh;Mina, Mortazavi
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.293-318
    • /
    • 2023
  • This study aims to examine the elastic stiffness properties of Elliptic-Braced Moment Resisting Frame (EBMRF) subjected to lateral loads. Installing the elliptic brace in the middle span of the frames in the facade of a building, as a new lateral bracing system not only it can improve the structural behavior, but it provides sufficient space to consider opening it needed. In this regard, for the first time, an accurate theoretical formulation has been developed in order that the elastic stiffness is investigated in a two-dimensional single-story single-span EBMRF. The concept of strain energy and Castigliano's theorem were employed to perform the analysis. All influential factors were considered, including axial and shearing loads in addition to the bending moment in the elliptic brace. At the end of the analysis, the elastic lateral stiffness could be calculated using an improved relation through strain energy method based on geometric properties of the employed sections as well as specifications of the utilized materials. For the ease of finite element (FE) modeling and its use in linear design, an equivalent element was developed for the elliptic brace. The proposed relation was verified by different examples using OpenSees software. It was found that there is a negligible difference between elastic stiffness values derived by the developed equations and those of numerical analysis using FE method.

에너지 저장시스템용 복합재 플라이휠 로터의 설계 (Design of a Composite Flywheel Rotor for Energy Storage System)

  • 정희문;최상규;하성규
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1665-1674
    • /
    • 1995
  • An optimum design has been performed to maximize specific energy (SED) of composite flywheel rotor for energy storage system. The flywheel rotor is assumed to be an axisymmetric thick laminated shell with a plane strain state for structural analysis. For the structural analysis the centrifugal force is considered and the stiffness matrix equation was derived for each ring considering the interferences between the rings. The global stiffness matrix was derived by integrating the local stiffness matrix satisfying the conditions of force and displacement compatibilities. Displacements are then calculated from the global stiffness matrix and the stresses in each ring are also calculated. 3-D intra-laminar quadratic Tsai-Wu criterion is then used for the strength analysis. An optimum procedure is also developed to find the optimal interferences and lay up angle to maximize SED using the sensitivity analysis.

전달강성계수법에 의한 직선형 구조물의 시간 이력응답 해석알고리즘에 관한 연구 (A Study on the Analysis Algorithm of Time Historical Response of Straight-line Structure by the Transfer Stiffness Coefficient Method)

  • 문덕홍;강현석;최명수
    • 동력기계공학회지
    • /
    • 제3권1호
    • /
    • pp.74-79
    • /
    • 1999
  • This paper describes formulation for algorithm of time historical response analysis of vibration for straight-line structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark method. And this present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the straight-line structure containing crooked, tree type system. The validity of the present method compared with the transfer matrix method and the Finite Element Method for transient vibration analysis is demonstrated through the numerical computations.

  • PDF

Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method

  • Park, Myung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.805-815
    • /
    • 2003
  • In order to execute efficiently the free vibration analysis of 2-dimensional structures like plate structures, the author developed the finite element-transfer stiffness coefficient method. This method is based on the combination of the modeling techniques in the FEM and the transfer technique of the stiffness coefficient in the transfer stiffness coefficient method. Numerical results of the simply supported and the elastic supported rectangular plates showed that the present method can be successfully applied to the free vibration analysis of plate structures on a personal computer. We confirmed that, in the case of analyzing the free vibration of rectangular plate structures, the present method is superior to the FEM from the viewpoint of computation time and storage.

감도계수 반복법을 이용한 구조물의 고유진동수 및 고유벡터 변화량 예측 (Prediction of Modified Structural Natural Frequencies and Modes using Interative Sensitivity Coefficient)

  • 이정윤
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.40-46
    • /
    • 2000
  • This study predicts the modified structural eigenvector and eigenvalue due to the change in the mass and stiffness of 2-dimesional continuous system by iterative calculation of the sensitivity coefficient using the original dynamic characteristic. The method is applied to examples of a crank shaft by modifing the mass and stiffness. The predicted dynamics characteristics are in good agreement with these from the structural analysis using the modified mass and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural analysis using the modified mass and stiffness.

  • PDF

Buckling of sandwich cylindrical shells under axial loading

  • Ohga, Mitao;Wijenayaka, Aruna Sanjeewa;Croll, James G.A.
    • Steel and Composite Structures
    • /
    • 제5권1호
    • /
    • pp.1-15
    • /
    • 2005
  • Important characteristics of the previously proposed reduced stiffness method and a summery of its design curves for the buckling of the axially loaded sandwich cylindrical shells is presented. Comparison of the lower bound obtained with FEM analysis with that from the reduced stiffness analysis shows that the proposed reduced stiffness method can provide safe lower bounds for the buckling of geometrically imperfect, axially loaded sandwich cylindrical shells. One of the attractive features of the reduced stiffness elastic lower bound analysis is that it provides safe estimates of buckling loads that do not depend on the specification of the precise magnitude of the imperfection spectra. As a result, designers can readily apply this method without being worried about possible geometrical imperfections that might be generated during fabrication and construction of sandwich cylindrical shells.

탄성지반위의 보의 엄밀한 강성계산을 위한 개선된 해석방법 (Improved Numerical Method Evaluating Exact Static Element Stiffness Matrices of Beam on Elastic Foundations)

  • 김남일;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.589-596
    • /
    • 2006
  • An improved numerical method to obtain the exact element stiffness matrix is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric thin-walled beam-columns with two-types of elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column. This numerical technique is firstly accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Then exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions.

  • PDF