• Title/Summary/Keyword: Stiffened steel plate

Search Result 91, Processing Time 0.019 seconds

Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings

  • Ali, Mustafa M.;Osman, S.A.;Husam, O.A.;Al-Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.361-373
    • /
    • 2018
  • This paper presents the development of finite element (FE) models to simulate the behavior of diagonally stiffened steel plate shear wall systems (SPSWs) with differently shaped openings subjected to a cyclic load. This walling system has the potential to be used for shear elements that resist lateral loads in steel-framed buildings. A number of $\text\tiny{^1/_2}$-scale one-story buildings that were un-stiffened, stiffened and stiffened with opening SPSWs are modeled and simulated using the finite element method based on experimental data from previous research. After validating the finite element (FE) models, the effects of infill plate thickness on the cyclic behavior of steel shear walls are investigated. Furthermore, triple diagonal stiffeners are added to the steel infill plates of the SPSWs, and the effects are studied. Moreover, the effects of a number of differently shaped openings applied to the infill plate are studied. The results indicate that the bearing capacity and shear resistance are affected positively by increasing the infill plate thickness and by adding triple diagonal stiffeners. In addition, the cyclic behavior of SPSWs is improved, even with an opening in the SPSWs.

Compression Behavior of Steel Plate-Concrete Structures for both Stiffened and Nonstiffened structures by Rib (리브 보강 유무에 따른 강판-콘크리트 구조의 압축거동)

  • Choi, Byong Jeong;Han, Hong Soo;Han, Kweon Gyu;Lee, Seung Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.471-481
    • /
    • 2009
  • The purpose of this study was to compare and analyze the compression behaviors of SSC (stiffened steel plate-concrete) and NSC (non-stiffened steel plate-concrete) structures, and to identify the effects of the increment in the structural performance of SSC structures. SCC structures are structures that integrate steel plates with line support from ribs (H-shape) and point supports from studs with concretes. On the other hand, NSC structures are structures that integrate steel plates with point supports from studs with concrete. The following results were obtained in this study. First, compared with NSC structures, it was shown that SSC structures have advantages in terms of preventing steel plate buckling and delaying quick destruction through the brittleness of concrete. In addition, the SSC structures showed a 5-28% increment in maximum compressive strength, which far surpassed that shown by the NSC structures.

Buckling Analysis of Simple Supported Plate Stiffened with Laminated Composite Panel (복합적층 패널로 보강된 단순지지 판의 좌굴해석)

  • Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.621-628
    • /
    • 2004
  • This paper introduces a new theory, that in a stiffened plate, a steel stiffener could be substituted a composite material in order to prevent from buckling. Changing a steel stiffener into a composite material would not only preclude welding, but could also prevent damage to the material due to fatigue and corrosion.A composite material is assumed to adhere to a steel plate, and is never separated from the plate until the steel plate reaches buckling.Such plate has variable shapes, with different lengths and widths, and also shows an anisotropic material property. LUSAS, a commercial finite element analysis package, was used in the buckling analysis.This paper investigated buckling behavior in anisotropic composite plates with variable parameters.

Optimal Adherent Position of Viscoelastic Material for the Reduction of Sound Power Radiated from the Stiffened Plate (보강판의 방사소음저감을 위한 제진재의 최적 위치 선정)

  • Kim, Sa-Su;Jo, Dae-Seung;An, Ho-Il;Jeong, Sang-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.22-32
    • /
    • 1998
  • Many of steel structures having little internal damping consist of stiffened plates. In case that viscoelastic materials are adhered to the stiffened plates for the reduction of structure-borne noise, their effects are varied by the adhered position and dynamic characteristics of the structures as well as their material properties and adhered amount. In this paper, sound reduction effects of viscoelastic materials partially adhered to the different positions of a stiffened steel plate have been investigated by the measurement of vibratory velocity and sound intensity. The results show that optimal adherent positions of viscoelastic materials to reduce sound radiation power are the loop areas of modes.

  • PDF

The Local Behavior Characteristics of a Plate Stiffened with Closed Ribs (폐단면 리브 보강판의 국부 거동 특성)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.277-288
    • /
    • 2014
  • In this study, the local displacement and moment characteristics of a plate stiffened with closed ribs are analyzed according to the dimensions of stiffened plates. The analyzed results of various stiffened plates under square distributed load show that the effect of the loading panel width to the local behavior is dominant but that of the next panel width is very small. And the local behavior of reference stiffened plates can be expressed by the angle between the plate and the rib, and that of other stiffened plates can be obtained by multiplying ratio functions of the loading panel width, plate thickness, rib thickness, rib height and next panel width and they give good results. Applying ratio functions to other loading sizes shows that the applicability of ratio functions except for the loading panel width is proved and the modified ratio functions of the loading panel width improve error ratios. Therefore, the local displacement and moments of a plate stiffened with closed ribs can easily achieve proper results regardless of the dimensions using ratio functions proposed in this study.

A Study on Flexural Ductility of Longitudinally Stiffened Plate Girders (수평보강재가 설치된 플레이트 거더의 휨 연성에 관한 연구)

  • Yoon, Dong Yong;Kim, Kyung Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.643-653
    • /
    • 2007
  • The ultimate bending strength and flexural ductility performance of longitudinally stiffened plate girders fabricated with mild steel were investigated utilizing nonlinear incremental finite element analysis. AASHTO LRFD (2002) design specifications were reviewed for possible application of longitudinally stiffened plate girders as compact sections. In order to investigate compact section requirements for plate girders with longitudinal stiffeners in webs, a number of full-scale plate girders were modeled and analyzed up to the collapse under pure bending condition. It was found that the slenderness of sub panel of the webs, the stiffness of longitudinal stiffeners, and the slenderness of compression flanges are key parameters governing the flexural ductility of the plate girders. It was also found from finite element analysis that longitudinally stiffened plate girder sections can satisfy compact section requirements both in full plastic moment capacity and flexural ductility requirement. New design equations have been proposed for longitudinally stiffened plate girders to be treated as compact sections.

Analysis Model of Corrugated Steel Plates for Soil-Metal Box Culverts (지중강판 박스구조물을 위한 파형강판 해석 모델)

  • Choi, Dongho;Lee, Jongsun;Na, Hosung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.5-18
    • /
    • 2010
  • In this paper, a 3-dimensional stiffened plate model for soil-metal box structures is proposed. 3-dimensional stiffened plate model is enable to model corrugated steel plates of soil metal box culverts considering section modulus and section properties of longitudinal and horizontal direction from a corrugated steel plate. Loading conditions which causes maximum displacement and maximum moment according to the step construction stages(a back filling to the top of the plate, a back filling to the maximum depth of cover, and loading of live loads) was applied and the behaviors of the soil metal box culverts was analyzed. Analysis results of 3-dimensional stiffened model were compared with those of 2-dimensional model, 3-dimensional equivalent plate model and 3-dimensional corrugated plate model. As results, the behaviors of 2-dimensional model and 3 dimensional equivalent model are different from 3-dimensional corrugated plate model but the result of 3-dimensional stiffened model has good agreement with that of 3-dimensional corrugated plate model.

The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling (국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도)

  • Park, Ho-Sang;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • This paper describes an experimental research on the structural behavior and the ultimate strength of longitudinally stiffened plates subjected to local, distortional, or mixed-mode buckling under compression. The stiffened plate undergoes local, distortional, or interactive local-distortional buckling according to the flexural rigidity of the plate's longitudinal stiffeners and the width-thickness ratios of the sub-panels of the stiffened plate. A significant post-buckling strength in the local and distortional modes affects the ultimate strength of the longitudinally stiffened plate. Compression tests were conducted on stiffened plates that were fabricated from 4mm-thick SM400 steel plates with a nominal yield stress of 235MPa. A simple strength formula for the Direct Strength Method based on the test results was proposed. This paper proves that the Direct Strength Method can properly predict the ultimate strength of stiffened plates when the local buckling and distortional buckling occur simultaneously or nearly simultaneously.

Formulating the Local Displacement and Local Moments of a Plate Stiffened with Open Ribs According to the Dimensions of Stiffened Plates (보강판 제원에 따른 개단면 리브 보강판의 국부 처짐과 국부 모멘트의 정형화)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.659-670
    • /
    • 2012
  • The purpose of this study is to formulate the local displacement and moments of a plate stiffened with open ribs according to the dimensions of stiffened plates. Analyzed results of various plates stiffened with rectangular and reverse T ribs show that the effect of the lower flange to the local behavior is very small, so the local behavior can be expressed by ratio functions of the rib space, web thickness, web height and plate thickness and the ratio functions of rectangular and reverse T ribs can be unioned. The application of ratio functions to other types of stiffened plates shows that the increment of the error ratio is so small compared with examples of this study that the applicability of this study is proved.

Analytical Study on Strength Resistance of Steel Beams with Stiffened Ends by Reinforced Concrete -difference of behavior with fixing plate- (복합보의 내력성능에 관한 연구 -정착판의 설치에 의한 거동의 차이-)

  • Kim, Seong Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.681-690
    • /
    • 2000
  • Recently, a long span is often required for the spacious building. Therefore the increase of stiffness is necessary to prevent floor vibration and control deformation of the building under earthquake and wind loads. For this purpose, steel beams with stiffened ends by reinforced concrete are effective. To realize such an effective reinforcement method, the smoothening of bending and shear stress transmission at the boundaries between middle-part of the steel beam and both end-parts of the steel beam with stiffened ends by reinforced concrete is required. Therefore, the fixed plate was installed at the boundary with the view of transferring the stress smoothly. This paper evaluates the method of effective transmission of bending and shear stress through the numerical analysis that is based on advanced experimental tests.

  • PDF